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NEDERLANDS: Onderaan elke pagina is een zogenaamd flipboek afgedrukt.
Door snel door de pagina’s te bladeren vormen de plaatjes een film. Elk plaatje
toont 3 deeltjes op een rij, die met elkaar botsen (zie Hoofdstuk 5):

• Oneven pagina’s (rechterkant): De botsingen tussen de deeltjes zijn in-
elastisch, wat betekent dat er bij elke botsing energie verloren gaat. Het
is precies deze eigenschap die ervoor zorgt dat er zich een cluster van deel-
tjes aan de rechterwand vormt. (Begin dit flipboek aan het eind van het
proefschrift)

• Even pagina’s (linkerkant): De botsingen tussen de deeltjes zijn elastisch,
dat wil zeggen, er gaat nu geen energie verloren tijdens de botsingen. Het re-
sultaat is dat de deeltjes niet gaan clusteren, maar evenredig verdeeld blijven
over het systeem. (Begin dit flipboek aan het begin van het proefschrift)

ENGLISH: Two flip books are printed on the bottom of every page. When flip-
ping through the pages, the snapshots of 3 particles form a movie (see Chapter 5):

• Odd pages (right hand side): Inelastic particle-particle collisions with a
restitution coefficient e = 0.5, meaning that one half of the velocity is lost in
each collision. This inelasticity causes the development of the cluster close
to the right wall. (Start this flip book at the end of the thesis)

• Even pages (left hand side): Elastic collisions between particles (restitution
coefficient e = 1.0). No energy is lost in the collisions and the particles
remain uniformly distributed over the system. (Start this flip book at the
beginning of the thesis)

The initial conditions (particle position and velocity) are the same for both movies
and when the leftmost particle hits the left wall, it is given the same fixed velocity;
so the only difference between the systems is the value of the restitution coeffi-
cient e. The collisions of the rightmost particle with the right wall are completely
elastic in both flip books, so no energy is lost here.
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CHAPTER 1. INTRODUCTION

1.1 The relevance of granular matter

Granular, grain-like materials can be encountered anywhere: In everyday life one
can think of sugar, salt and cereals (to name a few), and also in industries like
the pharmaceutical and food industry the examples are numerous. The chemical
industry for example is heavily dominated by these materials: More than 75%
of the raw materials and half of their final products are in the form of granular
matter [1].

One of the problems with granular matter that arise in nature occurs when sand
dunes move slowly but steadily through the desert. Although the maximum speed
of a dune is only 100 meter a year (under the most favorable circumstances [2]),
it can easily “stroll” onto a road or swallow the suburbs of a city like Nouakchott
in Mauritania (see Fig. 1.1).

In industry problems can arise while transporting, handling, or storing granular
materials, see for example the collapsed silo of Fig. 1.1. Annually about 1000 silos
fail in North-America alone due to avoidable design problems [3].

Figure 1.1: Sugar and pills are examples of granular materials. Problems with granular
matter become visible in the large dune threatening to swallow the city of Nouakchott
(capital of Mauritania) and the collapsed silo.
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1.1. THE RELEVANCE OF GRANULAR MATTER

Another study showed that start-up problems under 39 new granular solids-
processing plants were considerable [4]: The scheduled start-up time was three
months on average, but the actual time needed to start up was nine months on av-
erage, and one third of the plants even needed more than one year. The delay was
usually caused by granular materials forming a plug, sticking together, flowing
unevenly or uncontrollably.

Globally about 10% of the energy is consumed by the industries process-
ing granular matter and approximately 40% (500 billion dollar) of this energy
is wasted due to problems with a granular origin as sketched above [3].

A lot of engineering experience has been applied directly to industrial prob-
lems, but the persistence of these problems indicates that there is a great demand
for fundamental research to get a better understanding of the underlying physics
in granular systems.

Even though these materials seem so ordinary, since they appear to behave
like a normal solid, liquid or a gas (see Fig. 1.2), they often show counterintuitive
effects and differ to some extent from these normal states of matter. Therefore
granular matter is often referred to as the fourth state of matter [5–7]. Compare
for example an hourglass with a water clock (or “clepsydra”). The flow rate of a
running water clock decreases rapidly, due to the decreasing hydrostatic pressure
in the upper vessel. By contrast, the sand in the hourglass runs at a constant
speed. The reason for this behavior is that there is hardly any build-up of the
pressure inside the sand, because arch-like structures redirect the pressure of the
sand towards the wall of the hourglass. This results in an almost constant pressure
at the orifice and therefore an almost empty hourglass flows just as fast as a full
one.

Fundamental research on granular matter started to receive increasing atten-

Figure 1.2: Granular matter can behave either like a solid (sand castle), a liquid (hour-
glass) or a gas (sandstorm).
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Figure 1.3: The number of articles containing the word “granular” in the title or abstract
published annually since 1991 (based on Web of Science). The straight line is a linear fit
through the data with a slope 71 articles/year2.

tion around 1990. This is reflected by Fig. 1.3, which shows the growth in the
annual number of articles published in this relatively young branch of physics.
The number of articles on granular research published each year has doubled in
the past 15 years.

This thesis focuses on granular matter that behaves solid-, liquid-, or gas-
like when shaken vertically. The collective phenomena observed in this system
often show a mix of these states. To describe these phenomena hydrodynamic
models are used, adapted to granular materials. This is in the spirit of what
is probably the most important question in granular research today: “To what
extent can hydrodynamic-like models describe phenomena observed in granular
systems?” [8–12]. This thesis combines experiments, molecular dynamics simu-
lations, and theoretical analysis. All three are found to agree very well, shedding
light on the degree to which hydrodynamics can be applied to vertically shaken
granular matter.

1.2 A guide through the chapters
In Chapter 2 an experimental phase diagram for a quasi 2-D system is constructed,
giving an overview of the wide range of collective phenomena observed in ver-
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1.2. A GUIDE THROUGH THE CHAPTERS

Figure 1.4: Undulations, a standing wave pattern, showing up in the experimental phase
diagram of Chapter 2.

tically shaken granular matter; bouncing bed, undulations, granular Leidenfrost
effect, convection rolls, and granular gas. These phenomena and the transitions
between them are characterized by the following dimensionless control parame-
ters: the shaking acceleration Γ, the shaking strength S, and the number of particle
layers F .

The granular version of the Leidenfrost effect, in which a dense cluster floats
on a dilute layer of fast particles, is the subject of Chapter 3. The granular Lei-
denfrost effect is observed above a critical shaking strength and for a sufficient
number of particles in a 2-D setup. The experimental observations are success-

Figure 1.5: The granular Leidenfrost effect is successfully described by a hydrodynamic
model in Chapter 3.
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CHAPTER 1. INTRODUCTION

Figure 1.6: Granular convection is studied in Chapter 4 by means of experiment, simu-
lations and theoretical analysis. The observed effects are qualitatively and quantitatively
captured by a hydrodynamic model.

fully explained by a hydrodynamic model, which makes the granular Leidenfrost
effect a prime example of a granular system captured by hydrodynamic equations.

Buoyancy driven granular convection is studied for a quasi 2-D system in
Chapter 4. Counter-rotating convection rolls with pronounced density variations
are formed at strong shaking strengths. The experimental observations are con-
firmed by numerical simulations and the onset of convection is correctly described
by a linear stability analysis of the hydrodynamic model presented in Chapter 3.

Chapter 5 discusses the horizontal 1-D system of inelastic particles introduced
by Du, Li, and Kadanoff [8], which is essentially a horizontal version of the granu-
lar Leidenfrost effect: In the characteristic steady state a single particle commutes
between the driving wall and a dense cluster (see Fig. 1.7). The main reason why
we study this system is not the analogy with the Leidenfrost effect, but some-
thing which is more central to the scope of this thesis: We show that this system
marks the precise extent to which granular hydrodynamics can go. The density is
well captured by a hydrodynamic description incorporating the finite size of the

Figure 1.7: The horizontal array of inelastic particles of Chapter 5: A single particle
commutes between the hot left side and an almost immobile cluster at the right.
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1.2. A GUIDE THROUGH THE CHAPTERS

Figure 1.8: The first granular realization of the Smoluchowski-Feynman ratchet, pre-
sented in Chapter 6.

particles. The temperature profile, however, is not described by the hydrodynamic
equations, since all energy exchange is localized at the border of the cluster: Gran-
ular hydrodynamics at its edge.

In Chapter 6 we present the first granular realization of the Smoluchowski-
Feynman ratchet. It consists of four vanes that are allowed to rotate freely in a
vertically shaken granular gas. The two sides of the vanes are coated differently
to induce a preferential direction of rotation, i.e., the ratchet effect.

Originally, in the Gedankenexperiment of Smoluchowski [14] and Feynman
[15] the device was submerged in a heat bath at thermal equilibrium, where the
second law of thermodynamics prohibits any ratchet effect: No work can be ex-
tracted spontaneously from an environment in thermodynamic equilibrium. The
granular gas, however, is far from equilibrium, so the granular ratchet can work.
The device cleverly translates the energy from its noisy environment (which is
pumped into the system by the vibrating bottom) into a directed motion. Af-
ter various chemical motors on the micro-scale [16], this is the first macroscopic
Smoluchowski-Feynman ratchet, and the first one that is able to sustain a contin-
uous rotation.

The Leidenfrost effect is the phenomenon that a drop of water can float on
its own vapor layer over a hot plate for a long time. Chapter 7 studies the star-
like shape oscillations of such a Leidenfrost drop, i.e., Leidenfrost stars. Particle

7



CHAPTER 1. INTRODUCTION

Figure 1.9: The floating drop of water of the Leidenfrost effect shows rapid shape oscil-
lations: Leidenfrost star (Chapter 7).

tracking within the drop reveals that these lateral shape oscillations form just one
of the possible modes of motion in which the symmetry of the floating drop is
broken. The observed transitions between these modes correspond to a transfer of
kinetic energy.

Finally, the thesis ends with a general conclusion and outlook in Chapter 8.
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CHAPTER 2. GRANULAR PHASE DIAGRAM

A shallow, vertically shaken granular bed in a quasi 2-D container is
explored experimentally yielding a wider variety of phenomena than
in any previous study: (1) bouncing bed, (2) undulations, (3) granular
Leidenfrost effect, (4) convection rolls, and (5) granular gas. These
phenomena and the transitions among them are characterized by di-
mensionless control parameters and combined in a full experimental
phase diagram.

2.1 Introduction
Vertically shaken granular matter exhibits a wealth of fluid-like phenomena: Un-
dulations [1–3] and other wave patterns [4, 5] (comparable to Faraday waves in an
ordinary liquid [6, 7]), the granular Leidenfrost effect [8] (being the granular ver-
sion of the synonymous effect of a water drop hovering over a hot plate [9]), and
convection rolls reminiscent of those found in a fluid heated from below beyond
the Rayleigh-Bénard instability [10, 11]. However, while in normal fluids and
gases these phenomena are fully understood, this is much less the case for their
granular counterparts. One of the major challenges in granular research today is
to achieve a hydrodynamic-like description of these effects, and although such a
description has been given successfully for some isolated cases, we are still far
from an overall theory.

An indispensable step towards any such theory, and an important indication
of the physical mechanisms at work, is the determination of the dimensionless
control parameters that govern the phenomena. Here we present an experimental
study of a vibrated bed of glass beads in which we do exactly this: For each
observed effect (and the phase transitions between them) we identify the relevant
control parameters. The paper culminates in the construction of an experimental
phase diagram in which all observed phenomena are combined.

Our experimental setup (Fig. 2.1) consists of a quasi 2-D Perspex container
of dimensions L×D×H = 101× 5× 150 mm (with L the container length, D
the depth, and H the height), partially filled with glass beads of diameter d =
1.0 mm, density ρ = 2600 kg/m3, and coefficient of normal restitution e ≈ 0.95.
The setup is mounted on a sinusoidally vibrating shaker with tunable frequency f
and amplitude a. Most of the experiments presented in this paper are performed by
upsweep experiments in which the frequency is increased linearly at 75 Hz/min.
These experiments are recorded with a high-speed camera capturing 2000 frames;
adequate recording times (4−16 s) are obtained by adjusting the frame rate.

12



2.1. INTRODUCTION

Figure 2.1: The experimental setup in which glass beads of diameter d = 1.0 mm are
vibrofluidized. The length of the container is L = 101 mm; the bed height at rest (h0)
is varied in our experiments such that the aspect ratio L/h0 always remains large. The
container depth is only five particle diameters, making the setup quasi two-dimensional.

The natural dimensionless control parameters to analyze the experiments are
(i) the shaking parameter a2ω2/g` (with ω = 2π f and g = 9.81 m/s2), being the
ratio of the kinetic energy inserted into the system by the vibrating bottom and
the potential energy associated with a typical displacement of the particles `; (ii)
the number of bead layers F ; (iii) the inelasticity parameter ε = (1− e2); and (iv)
the aspect ratio L/h0, where h0 denotes the bed height at rest. The parameter ε is
taken to be constant in this paper, since we ignore the velocity dependence and use
the same beads throughout. The aspect ratio varies by changing the bed height h0
(i.e., the number of layers F) but remains large in all experiments; i.e., L/h0 À 1.
We will systematically vary the first two dimensionless parameters, by changing
the amplitude a, the frequency f , and the number of layers F .

The most intriguing of the four parameters above is the first one, the shak-
ing parameter, since the typical displacement of the particles ` is influenced in a
non-trivial way by the vibration intensity and the number of particle layers. For
mild fluidization, the displacement of the particles is determined by the amplitude
of shaking a, since the bed closely follows the motion of the bottom. The en-
ergy ratio in this case becomes identical to the well-known dimensionless shaking
acceleration

Γ =
aω2

g
. (2.1)

13



CHAPTER 2. GRANULAR PHASE DIAGRAM

For strong fluidization, the particles no longer follow the bottom, so (instead of a)
some intrinsic length scale needs to be taken for `, such as the particle diameter d.
This leads to the dimensionless shaking strength S (see Refs. [8] and [12])

S =
a2ω2

gd
. (2.2)

At intermediate fluidization, we will encounter phenomena in which there is a
competition of length scales. In this region the transitions are affected by changing
one of the competing length scales, meaning that the choice of the appropriate
shaking parameter is not a priori clear. This will become an issue in particular
for the transition from undulations to the granular Leidenfrost effect described in
Section 2.4.

In the following Sections, the various phenomena observed in our system are
discussed one by one, in the order in which they appear as the fluidization is in-
creased: bouncing bed (Section 2.2), undulations (Section 2.3), granular Leiden-
frost effect (Section 2.4), convection rolls (Section 2.5), and granular gas (Sec-
tion 2.6). Finally, in Section 2.7 all five phenomena will be combined in a phase
diagram of the relevant shaking parameter versus the number of layers.

2.2 Bouncing Bed
For shaking accelerations Γ≤ 1 (and even for Γ slightly above 1) the granular bed
behaves as a solid, co-moving with the vibrating bottom and never detaching from
it. In order to detach, the bottom must at some point during the cycle have a down-
ward acceleration that overcomes gravity (as for a single bouncing ball [13, 14])
plus the friction between the bed and the walls of the container. These walls carry
a considerable portion of the bed weight, as described in the Rayleigh-Janssen
model [15, 16] by the detachment condition for the dimensionless shaking accel-
eration:

Γdetach = 2− e−χ , with χ = Kµsξ . (2.3)

Here χ is the decompaction parameter, which is defined by the coefficient of redi-
rection toward the wall K, the static friction coefficient for Perspex µs = 0.8 and
the ratio of the contact area over the cross-sectional area ξ :

ξ =
Ph0

A
=

2(D+L)h0

DL
→ ξ =

2h0

D
(D¿ L), (2.4)
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0.0 T

0.3 T

0.6 T

Figure 2.2: Time-series of a bouncing bed for F = 8.1 layers of d = 1.0 mm glass
beads at shaking acceleration Γ = 2.3 (a = 4.0 mm, f = 12.0 Hz). The phase of the
sinusoidally vibrating bottom is indicated in each snapshot, where T is the period of
shaking [ybottom(t) = asin(2πt/T )]. The friction between the particles and the container
walls causes the downward curvature of the bed close to the sidewalls that is visible in the
lower snapshot.

where P is the perimeter, h0 the bed height at rest, and A the cross-sectional area
of the container. Once the detachment condition of Eq. (2.3) is fulfilled, the bed
bounces in a similar way as a single particle would do: We call this a bouncing
bed, see Fig. 2.2.

The value of Γ at which the transition from solid to bouncing bed occurs in ex-
periment has been determined by gradually increasing the frequency f (for three
fixed shaking amplitudes a = 2.0, 3.0, and 4.0 mm). The onset value grows with
the number of layers F , as shown in Fig. 2.3. The reason for this is the larger con-
tact area with the front- and sidewalls (larger ξ ) causing a proportionally higher
frictional force, leading to a higher value of Γdetach as described by Eq. (2.3). To
compare the model with the experiments we have to take into account that the
forces in our quasi 2-D setup (D ¿ L) are redirected weaker in comparison with
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CHAPTER 2. GRANULAR PHASE DIAGRAM

Figure 2.3: The transition from solid behavior to bouncing bed is governed by the
shaking parameter Γ. The critical value (here determined for three fixed amplitudes:
a = 2.0,3.0,4.0 mm) increases with the number of particle layers F following the
Rayleigh-Janssen model (solid line) with the redirection coefficient (K = 0.15) adapted to
our quasi 2-D setup.

the 3-D situation of the Rayleigh-Janssen model. Thus, the redirection coeffi-
cient K is expected to be smaller than the value for a compact triangular packing
(K = 0.58). This is indeed found, the best fit through the experimental data of
Fig. 2.3 is achieved for K = 0.15.

Figure 2.3 indicates that for the current transition (which occurs at mild flu-
idization) Γ is a good dimensionless parameter, as explained in the Sec. 2.1. It is
not ideal, as exemplified by the fact that the onset values do not exactly coincide
for the different amplitudes of shaking, but for a different choice of the shaking
parameter (S), the onset values differ much more.

2.3 Undulations
Starting from a bouncing bed and increasing the shaking frequency f , three dif-
ferent phenomena are observed: (a) For F 6 3 layers the bed is vaporized and be-
comes a granular gas (Sec. 2.6); (b) for 3 < F 6 6 convection rolls form (Sec. 2.5);
and (c) for F > 6 layers the bed develops standing waves oscillating at twice
the period of shaking (known as “undulations”, “arches”, “ripples”, or “ f /2-
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waves” [1, 3–5, 17]), and these will be covered in this section.
In the undulations regime, the granular bed shows standing wave patterns sim-

ilar to a vibrating string as shown in Fig. 2.4. The container (length L) accommo-
dates an integer number n of half-wavelengths of the granular string:

L = n
λ
2

, n = 1,2,3, . . . , (2.5)

where λ is the length of one arch in the undulation pattern. This λ represents a
new length scale in the system besides the shaking amplitude a and the particle
diameter d. Unlike these previous length scales, λ is connected to the elastic
properties of the particles, which play an important role in the undulations.

We observe that each collision with the bottom causes a shock wave through
the bed at a roughly constant speed v. This sends compaction waves along the

0.0 T

0.3 T

0.8 T

Figure 2.4: One complete standing-wave cycle of the n = 4 undulation mode for F = 9.4
particle layers at Γ = 12 (a = 2.0 mm, f = 39.3 Hz). The undulation cycle takes 2/ f ; i.e.,
twice the period of shaking.
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n=1 n=4

n=2 n=5

n=3 n=6

Figure 2.5: Six successive undulation modes, for F = 9.4 layers and a = 2.0 mm, at
shaking frequencies f = 29.0, 32.6, 38.2, 39.3, 46.1, 50.2 Hz. The mode number n
(the number of half-wavelengths fitting the container length L) increases with the shaking
intensity.

arch, starting out from the lower parts and meeting in the center. At this point
the waves bring each other to a halt and the center falls down to the bottom.
(At the same time, the previous lower parts are now elevated.) This occurs after
one shaking period and the collision with the bottom generates new shock waves,
repeating the series of events. In our experiments the undulation modes are always
perpendicular to the sidewalls; i.e., they show either a minimum or a maximum
there. This same boundary condition was also found by Sano [3]. We propose the
following physical reason: Whenever the bed does not move perpendicularly to
the wall, the particles will bounce off the sidewall instead of being halted by it,
and as a result the undulation mode is adjusted or shifted until it is perpendicular
to the wall.

Since it takes precisely two shaking periods to complete one full oscillation of
the undulation pattern (meaning that the minima and maxima exchange positions
every vibration cycle), the successive undulation modes appear with increasing
steps of half a wavelength.

Generally, the first undulation to be formed is the n = 1 mode, and for increas-
ing shaking intensity the higher modes depicted in Fig. 2.5 successively appear.
They are triggered by the horizontal dilatancy the bed experiences when it collides
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with the vibrating bottom [3]: the string of particles along the bottom dilates and
beyond a certain threshold, buckling will occur, which forces the particles into an
arch. Using this physical picture, Sano [3] was able to derive a theoretical form
of the undulation modes, which agrees with the form of the experimental ones
in Fig. 2.5. Let s denote the position along the length of the layer, following the
contour of the undulation, and θ(s) the angle the bed makes (at position s) with
the horizontal x-axis. This angle is governed by [3]

d2θ
ds2 =−α2 sin θ . (2.6)

Here α =
√

F/ẼI, with F the reaction force from the side walls upon both ends of

the bed, Ẽ the effective Young’s modulus of the bed, and I its moment of inertia.
Equation (2.6) is the well-known pendulum equation with s instead of the

time t. It can be solved analytically in terms of the Jacobi elliptic functions [3],
but for our purposes it is sufficient to consider the small angle approximation,
sin θ ≈ θ , which simplifies the problem to that of a harmonic oscillator. Inserting
the boundary conditions θ(0) = 0 and θ(L) = 0 (the bed is horizontal at both ends,
as discussed above), this yields the following solution:

θ(s) = θmax sin
(nπs

L

)
, (2.7)

with θmax denoting the maximal angle with the horizontal x-axis (which is an
increasing function of the mode number n). In the small angle approximation,
the horizontal distance x is equal to the measured length along the undulation
layer (x ≈ s), so the shape of the undulation modes can simply be calculated by
integrating Eq. (2.7) over x:

y(x) = θmax
L

nπ

[
1− cos

(nπx
L

)]
, n = 1,2,3, . . . . (2.8)

The profiles generated by Eq. (2.8) match the experimental modes of Fig. 2.5 very
well.

In our experiments, we first focused on the transition from the bouncing bed
behavior to the n = 1 mode. In Fig. 2.6 this transition is shown in the (Γ,F)-phase
diagram for three fixed amplitudes of shaking, a = 2.0, 3.0, and 4.0 mm. We
observe that the onset value of Γ decreases with growing number of layers F . The
reason for this is that the necessary horizontal dilation (of the lower layer) upon
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Figure 2.6: The transition from bouncing bed to undulations in the (Γ,F)-plane, for
three fixed values of the shaking amplitude (a = 2.0,3.0,4.0 mm). The critical value of
the shaking acceleration Γ decreases with growing number of particle layers F , since the
horizontal dilation of the bottom layer (required to trigger undulations, see text) becomes
more pronounced as a result of the extra layers on top. The horizontal lines correspond
to the onset of undulations predicted by Eq. (2.9) with n = 1, where the dotted blue line
corresponds to a = 2.0 mm, the dashed red line to a = 3.0 mm and the solid black line to
a = 4.0 mm.

impact with the bottom is more readily accomplished due to pressure from the
extra layers on top.

It is seen in Fig. 2.6 that the data for the three different shaking amplitudes co-
incide reasonably well, except at the threshold value of F = 6 layers. Presumably,
at this small value of F the dilation can only become sufficient if the density is
locally enhanced by a statistical fluctuation; were the experiment repeated many
times, the agreement between the averaged data for various a would be expected
to become better. For F < 6 layers no undulations are found, since the particle
density is then definitely too small (even in the presence of fluctuations) to reach
the required level of dilation.

The undulation regime lies in the area of mild fluidization, and Fig. 2.6 shows
that the dimensionless shaking acceleration Γ [see Eq. (2.1)] is indeed the ap-
propriate governing parameter for the undulation phase, in agreement with what
has been reported in the literature. Many researchers constructed a phase dia-
gram using Γ = a(2π f )2/g in combination with f ∗ = f

√
h0/g, which however
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are not independent of each other [3, 5, 18, 19]. We use the (Γ,F)-phase diagram,
in which the two control parameters are independent, as was also done by, e.g.,
Wassgren et al. [20] and Hsiau and Pan [21].

Now we come to the higher undulation modes. We have already mentioned the
role played by shock waves in the formation of undulations. Such a compaction
wave starts out from the lower regions, propagates along the arch, and is halted in
the center by its counterpart going in the opposite direction. Hence, these shock
waves travel a distance 1

2λ = L/n in one period of shaking T = 1/ f ; i.e., their
speed is given by v = L f /n. We know from the experiments that the speed of the
shock waves decreases roughly linearly from v = 2 m/s for n = 1, to v = 1 m/s
for the n = 6 mode, caused by the lower density inside the granular bed at higher
fluidization. Thus, we can estimate the shaking frequency fn at which a certain
mode will appear:

fn =
nv(n)

L
. (2.9)

Equation (2.9) predicts the onset of undulations [i.e., the first mode n = 1, with
v(1) = 2 m/s] reasonably well, as shown in Fig. 2.6. The higher undulation modes
observed for shaking amplitude a = 2.0 mm are displayed in Figure 2.7 along
with the location of the transitions for the various undulation modes n based on
Eq. (2.9). The location of these transitions is a fair match to the experimental
findings, which may be taken as a confirmation of the shock-wave mechanism
described above.

As already observed in Fig. 2.5 and demonstrated in Eq. (2.9), the mode num-
ber n increases for growing Γ. However, the sequence of modes is seen to be
interrupted somewhere in the middle: Here the undulation pattern gives way to
the granular Leidenfrost state [8], in which a cluster of slow particles is floating
on top of a dilute layer of fast particles. Normally, this state appears at the end
of the undulation regime (see Sec. 2.4), but when a certain standing wave pattern
is energetically unfavorable the system chooses the Leidenfrost state instead: In
Fig. 2.7 we see that this happens to the n = 3 undulation, which is completely
skipped from the sequence for F & 12 layers. This can be understood from the
fact that the n = 3 mode has an antinode at the sidewall (i.e., a highly mobile
region), whereas the friction with the wall tends to slow down the particles here.
This inherent frustration gives rise to the appearance of the granular Leidenfrost
effect.

Likewise, the small Leidenfrost region for 9 ≤ F . 12 below the onset line
of the n = 5 undulation has to do with a frustrated n = 5 mode. The frustration
is, however, not strong enough to skip the mode entirely as in the n = 3 case. In
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Figure 2.7: The onset of the successive undulation modes n = 1,2, ..,6 at a fixed shaking
amplitude a = 2.0 mm. The mode number n increases with the shaking parameter Γ,
but occasionally the undulations give way to the granular Leidenfrost effect (the hatched
regions above the dashed curve), where a dense cluster without any arches is floating on
a uniformly dilute granular layer. The grey lines on the right indicate the location of the
various undulation modes based on Eq. (2.9) and agree reasonably with the experimental
observations. The black lines are a guide to the eye.

our experiments, the intermediate Leidenfrost regions become smaller for larger
shaking amplitude a. For a = 4.0 mm they have disappeared altogether from the
undulation regime, as will be shown in Sec. 2.7.

2.4 Granular Leidenfrost effect

When the shaking frequency is increased beyond a critical level, the highest undu-
lation mode becomes unstable and we enter the granular Leidenfrost regime [8],
see Ch. 3: Here a dense cloud of particles is elevated and supported by a dilute
gaseous layer of fast beads underneath, see Fig. 2.8. The bottom layer of the un-
dulations is completely evaporated and forms the gaseous region on which the
cluster floats. The phenomenon is analogous to the original Leidenfrost effect in
which a water droplet hovers over a hot plate on its own vapor layer, when the
temperature of the plate exceeds a critical value [9]. The vaporized lower part of
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0.0 T
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Figure 2.8: Snapshots of the granular Leidenfrost effect for F = 8.1 particle layers
shaken at f = 43.0 Hz and a = 3.0 mm (corresponding to a dimensionless acceleration
Γ = 22 or shaking strength S = 67). A dense cluster is elevated and supported by a dilute
layer of fast particles underneath. The cluster never touches the vibrating bottom, which
makes this state distinctively different from the bouncing bed or the undulations.

the drop provides a cushion to hover on, and strongly diminishes the heat contact
between the plate and the drop, enabling it to survive for a relatively long time.

In Fig. 2.9 the transition from the undulations to the granular Leidenfrost state
is shown, both in the (Γ,F) and in the (S,F)-plane. Despite the fact that we have
left the mild fluidization regime behind, Γ still appears to be the governing shak-
ing parameter, since the data for the different amplitudes (a = 2.0,3.0,4.0 mm)
collapse better on a single curve in the (Γ,F) than in the (S,F)-plane. In fact,
the critical S-values in the latter plane show a systematic increase for growing
amplitude a.

This is in contrast to the observations on the granular Leidenfrost effect in a
previous study of smaller aspect ratio [8, 22], see Ch. 3, for d = 4.0 mm glass
beads in a 2-D container, where the phase transition was shown to be governed
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Figure 2.9: The transition from undulations to the granular Leidenfrost effect for increas-
ing frequency f and fixed amplitude a = 2.0,3.0,4.0 mm: (a) In the (Γ,F)-plane, (b) in
the (S,F)-plane. Since in our experiments the Leidenfrost state always originates from
the undulation regime, the same minimum number of layers is needed: F > 6. The criti-
cal values of Γ and S increase with F , since a higher energy input is required to elevate a
larger cluster.

by the dimensionless shaking strength S. In that case the Leidenfrost state was
reached directly from the solid bouncing bed regime, without the intermediate
stage of undulations. Presumably this was due to the much smaller aspect ratio
L/h0, which was on the order of 1 (against L/h0 ∼ 10 in the present Leidenfrost
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experiments) [23]. Another important difference was that the depth of the setup
was just slightly more than one particle diameter (against five diameters in the
present setup), so the motion of the granular bed was much more restricted; in-
deed, the floating cluster in Ref. [8], see Ch. 3, showed a distinctly crystalline
packing. It may be concluded, as already remarked in the Sec. 2.1, that the Lei-
denfrost effect lies in the regime of intermediate fluidization, where both Γ and
S are candidates to describe the behavior of the granular bed. The proper choice
of the shaking parameter here depends not only on the degree of fluidization, but
also on the dimensions of the specific system investigated.

It has been shown that the granular Leidenfrost effect observed in the 2-D con-
tainer of Ref. [8], see Ch. 3, is successfully explained by a continuum description
based on the hydrodynamic equations. The first one is the equation of state,

p = nT
nc +n
nc−n

, nc =
2√
3d2

. (2.10)

Here p is the pressure, n the number density with nc the density of a hexagonal
close packing, and T the granular temperature. The second equation is the force
balance,

d p
dy

=−mgn, (2.11)

where m is the mass of a single particle and g the gravitational acceleration. Fi-
nally we have the energy balance:

d
dy

(
κ

dT
dy

)
=

C1

`
εnT 3/2, (2.12)

in which κ is the thermal conductivity, ` the mean free path, ε = (1− e2) the
inelasticity parameter, and C1 is a constant.

The model described by Eqs. (2.10)-(2.12) is closed by three boundary con-
ditions: (1) A prescribed granular temperature at the bottom T0 = const, (2) a
vanishing energy flux [κ(y)dT

dy = 0] at the top of the system, and (3) the conser-
vation of particles

∫ ∞
0 n(y)dy = Fnc d. In Ref. [8], see Ch. 3, this set of equations

plus boundary conditions is solved numerically and the resulting density profiles
agree quantitatively with the experimental profiles. Thus, the experimental results
are successfully captured by the hydrodynamic model.
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2.5 Convection rolls

In our experiments, granular convection rolls are formed at high fluidization from
either (a) the bouncing bed (for 3 < F 6 6 layers) or (b) the granular Leidenfrost
effect (for F > 6). In both cases the onset of convection is caused by a set of par-
ticles in the cluster that are more mobile (higher granular temperature) than the

0.0 T

0.6 T

1.0 T

Figure 2.10: Granular convection for F = 8.1 layers at f = 73.0 Hz and a = 3.0 mm
(dimensionless shaking strength S = 193), showing four counter-rotating rolls. The beads
move up in the dilute regions (high granular temperature) and are sprayed sideways to the
three dense clusters (low granular temperature). In our system two clusters are always
located near the sidewalls, which have a relatively low granular temperature due to the
extra dissipation.
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Figure 2.11: The transition towards granular convection from the bouncing bed (3 <
F 6 6) and the Leidenfrost state (F > 6) in the (S,F)-plane, for fixed shaking amplitude
a = 2.0,3.0 and 4.0 mm. Just as for the Leidenfrost transition, the convection sets in at
higher values of S as the number of layers F is increased, because a higher dissipation
must be overcome for larger bed heights.

surrounding area, creating an opening in the bed. These particles have picked up
an excess of energy from the vibrating bottom (due to a statistical fluctuation) and
collectively move upwards, very much like the onset of Rayleigh-Bénard convec-
tion in a classical fluid heated from below [10, 24]. This upward motion of the
highly mobile beads must be balanced by a downward movement of neighboring
particles, leading to the formation of a convection roll.

The downward motion is most easily accomplished at the sidewalls, due to the
extra source of dissipation (i.e., the friction with the walls), and for this reason
the first convection roll is always initiated near one of the two sidewalls. Within a
second, this first roll triggers the formation of rolls throughout the entire length of
the container, leading to a fully developed convection pattern as in Fig. 2.10.

The convection rolls of Fig. 2.10 are fundamentally different from the rolls
reported in the literature: Extensive research has been done on granular convec-
tion experimentally [25–35], numerically [36–46], and theoretically [47–51]. All
studies deal with a mild fluidization (typically Γ < 10) for which the convec-
tion is principally boundary-driven and with a nearly constant density in the sys-
tem. The convection observed here, however, occurs at strong fluidization and the
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rolls show large density differences; i.e., we report of buoyancy-driven convection
rather than boundary-driven which is therefore distinctly different. We are aware
of only one numerical study, by Paolotti et al. [11], showing the same kind of rolls
with large density gradients, and we here present the first experimental observa-
tions. In the numerical model by Paolotti et al. the container walls were taken to
be perfectly elastic, leading to convection patterns in which the rolls were either
moving up or down along the sidewalls, whereas in our system (with dissipative
walls) they always move down.

To theoretically describe this buoyancy-driven convection we have expanded
the 1-D hydrodynamic model of the granular Leidenfrost effect (see Sec. 2.4) to
a 2-D model, similar to the approach by Khain and Meerson [50]. The set of
equations is linearized around the solution for the granular Leidenfrost state and
a stability analysis then yields the point at which the Leidenfrost state gives way
to convection rolls. The analysis will be discussed in detail in Chapter 4.

Figure 2.11 shows the transition to convection in the (S,F)-plane, starting
from either the bouncing bed or the Leidenfrost state, which are taken together
because the transition dynamics is the same in both cases. This is the first instance
in which the data points (acquired for all shaking amplitudes: a = 2.0, 3.0, and
4.0 mm) collapse better for the shaking parameter S than for the dimensionless ac-
celeration Γ, meaning that S is the preferred control parameter for the convection
transition.

The onset values of S grow with the number of layers F , because for large F
more energy input from the vibrating bottom is necessary to break through the
larger dissipation in the granular bed and trigger the first convection roll. Related
to this, the number of rolls in the convection pattern decreases for growing F : Due

Figure 2.12: Convection patterns for F = 6.2 layers of 1.0 mm stainless steel beads
at three consecutive shaking strengths: S = 58 (a = 2.0 mm, f = 60.0 Hz), S = 130
(a = 3.0 mm, f = 60.0 Hz), and S = 202 (a = 4.0 mm, f = 56.0 Hz). For increasing S
the convection rolls expand, hence a smaller number of them fits into the container. The
steel beads behave qualitatively the same as the glass beads used in the rest of the paper.
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to the larger total dissipation, the dense clusters of each roll grow in size. Hence,
the convection rolls become wider, meaning that less rolls fit into the container.

When, for a given number of layers F , the shaking strength S is increased (ei-
ther via the frequency f or the amplitude a), the number of rolls in the convection
pattern becomes smaller. This is illustrated in Fig. 2.12: The higher energy in-
put induces expansion of the convection rolls, and the number of rolls decreases
stepwise as S is increased. The steps involve two rolls at a time, since the pattern
always contains an even number of rolls due to the downward motion imposed by
the sidewalls.

2.6 Granular gas

In this section we briefly discuss the fifth and last phenomenon observed in our
system: A granular gas, being a dilute cloud of particles moving randomly through-
out the container as in Fig. 2.13. This state has also been seen in various other
experimental systems and is well described by hydrodynamic-like models found
in the literature [52, 53]. In fact, one can use the same continuum description as
for the granular Leidenfrost effect (Sec. 2.4): For a granular gas, the equation of
state of Eq. (2.10) simplifies to the ideal gas law p = nT , since the density in a gas
is always smaller than the critical number density (n¿ nc). The force balance of
Eq. (2.11) remains the same for a gas and in the energy balance of Eq. (2.12) the
thermal conductivity κ is no longer a function of the height, but a constant. This
set of equations is accompanied by boundary conditions and forms a model that
accurately describes the experimental observations.

In our setup the gas state is observed only for a small number of layers (F 6 3)
and always originates from the bouncing bed regime. At these small F , the bed
shows expansion and compaction during every vibration cycle due to the low total
dissipation. At the critical value of the shaking parameter, the bed expands to such
an extent that it evaporates and forms a gas.

The evaporation of the bouncing bed requires more energy as the number of
layers F increases. The transition seems to be controlled by the shaking accelera-
tion Γ (which also governs the transition from solid to bouncing bed) rather than
the shaking strength S. However, the data points available are too few (F 6 3)
to make this conclusive. The measurements will be presented in the full phase
diagram of the next section.
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Figure 2.13: Granular gas for F = 2.7 layers at f = 50.0 Hz and a = 3.0 mm (Γ = 30),
which has originated from a bouncing bed by increasing the shaking beyond a critical
level [see Fig. 2.14(b)]. With the vibration power available in our system, granular gases
are only observed for F 6 3 layers.

2.7 Phase diagram

Finally, all the phenomena and associated transitions described in the previous
sections are combined in the phase diagram of Fig. 2.14. Both shaking param-
eters (Γ and S) are used in this diagram, each of them indicating the respective
transitions they were found to govern. The parameter Γ is shown along the left
vertical axis and the corresponding data points (the critical Γ values) are colored
red. The parameter S is plotted along the right vertical axis and the corresponding
experimental data are colored blue; this concerns only the “+” signs at the con-
vection transition [54]. For comparison, the Γ-axis is kept the same in all three
phase diagrams.

Figure 2.14 contains three separate phase diagrams for the three fixed shaking
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Figure 2.14: Phase diagram of
the shallow granular bed at three
fixed values of the shaking am-
plitude: (a) a = 2.0 mm, (b) a =
3.0 mm, and (c) a = 4.0 mm. The
five phenomena explored in this
paper are indicated by the differ-
ent shadings. The onset values for
bouncing bed, undulations, Lei-
denfrost effect, and gas are gov-
erned by the shaking parameter
Γ (left vertical axis, in red); the
onset of convection is controlled
by S (right vertical axis, in blue).
The narrow region without shad-
ing along the horizontal F-axis
(below the bouncing bed regime)
corresponds to the solid phase,
in which the bed never detaches
from the vibrating bottom.
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amplitudes we have used throughout the paper: a = 2.0, 3.0, and 4.0 mm. Most
of the phase transitions are hardly affected, with the exception of the various tran-
sitions between the undulations and the Leidenfrost state. These transitions lie in
the regime of intermediate fluidization, where the system experiences a compe-
tition of length scales: the amplitude a, the particle diameter d, and additionally
the wavelength of the undulations λ . This becomes especially clear in the phase
diagram of Fig. 2.14(a) for a = 2.0 mm where the competition results in an al-
ternation of states. By increasing a, in Figs. 2.14(b) and 2.14(c) it becomes the
dominant length scale and the alternation vanishes ultimately.

How does Fig. 2.14 compare with other phase diagrams for shaken granular
matter in the literature?

First we discuss the experimental phase diagram by Wassgren et al. [20] for
a bed of 1.28 mm glass beads at mild fluidization (Γ ≤ 10). For increasing Γ,
they observe a series of transitions from a solid bed to undulations (“arching”)
in qualitative agreement with our own experiments at mild shaking. Their series
of transitions is interlaced however with several phenomena (Faraday heaping,
surface waves) that are not observed in our system. This is presumably due to
the larger depth of their container (12.5 particle diameters, versus 5 in our con-
tainer, which means that their setup deviates considerably from 2-D) and to the
fact that their bed height was typically an order of magnitude larger than ours:
The lowest aspect ratio L/h0 in their experiments was 2, versus 10 in our system.
Hsiau and Pan [21], who conducted experiments in a similar setup in the mild flu-
idization regime, found the same sequence of phenomena as Wassgren et al. [20].
Indeed, in three dimensions a much wider variety of phenomena is observed than
in 2-D systems, both in experiment [4, 5, 55–68] and in numerics [69–74], e.g.,
oscillons, heaping, standing wave patterns like squares, stripes, hexagons, spirals,
f /2-waves, f/4-waves, as well as phase bubbles and flat surfaces with kinks. We
have restricted ourselves to the shaking amplitude range a = 2.0− 4.0 mm, and
therefore we do not see oscillons which are only present for large amplitudes in
our setup. Heaping is not observed since the role of air on the d = 1 mm particles
is too small to develop heaps. Furthermore, all the above standing wave patterns
are surface phenomena and they are simply not observed because of the quasi 2-D
nature of our setup.

Secondly, Sunthar and Kumaran [43] construct a phase diagram (shaking
strength vs. number of layers) based on event-driven simulations in a 2-D system
with an aspect ratio L/h0 & 10, comparable to ours. At low shaking strength, their
phase diagram shows a region where the bed is “homogeneous”, corresponding to
the solid and bouncing bed regimes in our diagram. At higher shaking strength,

32



2.7. PHASE DIAGRAM

they find a granular gas for F < 5 and a region of granular convection for F > 5.
The gaseous region compares well with the gas region in Fig. 2.14. The convection
observed by Sunthar and Kumaran, however, occurs at a much milder fluidization
than in our system. In contrast to our convection rolls, the density of their rolls is
almost constant, indicating that the bed behaves more like a fluid than a gas.

Thirdly, Eshuis et al. [8], see Ch. 3, construct an experimental phase diagram
(supported by a theoretical model) for a bed of 4 mm glass beads in a 2-D setup.
The (S,F)-diagram shows a bouncing solid regime for low shaking strength and
a gas region for small F . Between these two phases, for S & 16 and F > 8, the
Leidenfrost regime is located. This is qualitatively the same as in Fig. 2.14, with-
out the regions of undulations and granular convection though. The fact that these
latter phenomena were absent is probably due to the much smaller aspect ratio
(L/h0 ∼ 1) and the much stronger confinement to two dimensions, since the depth
of the container was just slightly more than one particle diameter.

Finally, Paolotti et al. [11] performed a 2-D numerical study of a granular
bed with aspect ratio L/h0 ≈ 8, focusing on the transition towards convection.
Their convection rolls show similar arches and distinct density differences similar
to those observed in our experiments. Starting from strong fluidization, for a
given number of layers, they observe two transitions as the shaking strength is
reduced: First a transition from a non-convective state (presumably a granular
gas) to convection, followed by a transition towards a non-convective state again,
in which the particles remain localized near the bottom. This latter state is not
further specified, but most probably corresponds to a bouncing bed. In the phase
diagram of Fig. 2.14 the same sequence is found if one follows a path from the
gas regime to the bouncing bed via convection.

The phase diagram of Fig. 2.14 distinguishes various phase transitions, of
which some are phase boundaries and some mark gradual changes. Examples
of such a gradual change are the transition from a solid to a bouncing bed, the
evaporation of the lower regions of the undulations leading to the floating Lei-
denfrost cluster, and the expansion of the convection rolls towards a granular gas,
which will eventually occur if the shaking strength is increased further. The phe-
nomena observed before and after the transition all display the same symmetry. In
contrast, the transitions from a bouncing bed to undulations and the breakthrough
of convection rolls starting from the granular Leidenfrost effect show a transition
to a state with a different symmetry; they mark the solid-liquid and liquid-gas
boundary, respectively.

A solid-gas phase boundary is also found for small number of layers F < 6,
where the bouncing bed expands to either a granular gas or to convection rolls. For

33



CHAPTER 2. GRANULAR PHASE DIAGRAM

a larger number of layers, the solid-liquid phase boundary between the bouncing
bed and undulations discriminates between the non-fluidized and fluidized sys-
tem. When the system is fluidized a hydrodynamic approach is successful, and
as we get to a fully fluidized system, the transition from the Γ-dominated to the
S-dominated regime is marked by the liquid-gas phase boundary between the Lei-
denfrost effect and convection.

In conclusion, we have constructed the experimental phase diagram for a ver-
tically shaken shallow granular bed in a quasi 2-D container, identifying the di-
mensionless control parameters that govern the various transitions in this diagram.
In the present work we have concentrated on Γ and S (the shaking parameters),
and the parameter F (number of particle layers), and we have briefly outlined
the current theoretical models used to describe the various phenomena. From the
discussion above, it may be concluded that the aspect ratio is also an important
control parameter, determining, e.g., the set of different phenomena that a given
system is able to exhibit.

The diagram of Fig. 2.14 shows the full range of phases that granular matter
can display, behaving like a solid, a fluid, or a gas [75–79]. A determination of
the dimensionless parameters that govern the transitions between these phases is
a crucial step towards a better understanding of the physics of vertically shaken
granular matter.

Acknowledgments: We thank Stefan Luding for stimulating discussions.
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CHAPTER 3. GRANULAR LEIDENFROST EFFECT

Granular material is vertically vibrated in a 2-D container: Above a
critical shaking strength, and for a sufficient number of beads, a crys-
talline cluster is elevated and supported by a dilute gaseous layer of
fast beads underneath. We call this phenomenon the granular Lei-
denfrost effect. The experimental observations are explained by a hy-
drodynamic model featuring three dimensionless control parameters:
The energy input S, the number of particle layers F, and the inelastic-
ity of the particle collisions ε . The (S,F)-phase diagram, in which the
Leidenfrost state lies between the purely solid and gas phases, shows
accurate agreement between experiment and theory.

3.1 Introduction

Vertically shaken granular matter typically exhibits a region of reduced density
just above the vibrating bottom [1–5]. An exceptionally strong form of this so-
called density inversion was recently encountered in a theoretical study by Meer-
son et al. [6]: For sufficiently strong shaking a dense cluster of particles, showing
a hexagonal packing, was observed to be elevated and supported by a dilute layer
of fast particles underneath.

Here we present the first experimental observation of this phenomenon, which
we will call the granular Leidenfrost effect. It is analogous to the original Leiden-
frost effect of a water droplet hovering over a hot plate [7–9]: When the temper-
ature of the plate exceeds the Leidenfrost temperature TL ≈ 220◦C (equivalent to
the critical shaking strength in the granular system), the bottom layer of the drop
vaporizes instantly and prevents direct heat transfer from the plate to the drop,
causing the droplet to hover and survive for a long time [8].

We also give a theoretical explanation in the spirit of Meerson et al. [6, 10, 11].
These authors focused on the point where the density at the bottom first becomes
inverted, which is a precursor to the granular Leidenfrost effect (not yet the actual
phase separation). We study the subsequent transition from this density-inverted
state to the Leidenfrost state in which the solid and gas phases co-exist. A major
challenge in granular research today is to achieve a hydrodynamic-like continuum
description [12–17], which, however, in many cases breaks down due to the ten-
dency of the particles to cluster together [18, 19]. We show that the Leidenfrost
effect (despite the clustered phase) is well described by a hydrodynamic model.
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3.2 Experimental results
Our experimental setup (Fig. 3.1) consists of a quasi-2D container (10×0.45×14
cm) [20] filled with glass beads of diameter d = 4.0 mm, density ρ = 2600 kg/m3,
and coefficient of normal restitution e ≈ 0.95. The setup is mounted on a shaker
with tunable frequency f and amplitude a. The Leidenfrost effect, see Fig. 3.1, is
stably reproduced for given, sufficiently large values of the shaking strength and
the number of particle layers.

The four natural dimensionless control parameters to analyze the experiment
are (i) the shaking acceleration (with g the gravitational acceleration):

Γ =
a(2π f )2

g
, (3.1)

(ii) the number of bead layers F , (iii) the dimensionless shaking amplitude A =
a/d, and (iv) the inelasticity parameter ε = (1− e2).

First the dependence on Γ is investigated for a fixed number of layers F = 16.
Figures 3.2(a) and 3.2(b) show an experimental snapshot and the corresponding
density profile n(y) (determined by counting the number of black pixels in each
horizontal row) at moderate shaking, Γ = 7.7. The snapshot shows a hexagonal
packing and this is reflected in the periodic structure of n(y); i.e., the particles
behave like a solid crystal. The theoretical profile in Fig. 3.2(c) does not show
this periodicity, reflecting the continuum (non-particulate) character of the model.

Figure 3.1: Granular Leidenfrost effect: Glass beads, vertically vibrated above a critical
shaking strength, form a crystalline cluster that is elevated and supported by a vapor-like
layer of fast particles underneath. The thickness of the dilute layer oscillates in time (never
vanishing) due to the motion of the bottom, while the cluster floats steadily at the same
position.
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Figure 3.2: (a) Density profile, averaged over 300 consecutive snapshots, as a function
of height for F = 16 layers at shaking strength Γ = 7.7 (a = 0.3 mm, f = 80 Hz). The
origin y/d = 0 is set at the maximal positive displacement of the vibrating bottom. (b)
A typical snapshot of this experiment recorded by a high-speed camera (1000 fps) and
(c) the theoretical profile from the model in Eqs. (3.4)-(3.6) with S = 0.58. (d) Density
profile for F = 16 layers at Γ = 51.5 (a = 2.0 mm, f = 80 Hz), showing the Leidenfrost
state. The inversion height hinv marks the border between the gaseous and the solid phase;
it is determined via the method illustrated in Fig. 3.3. (e) The corresponding experimental
snapshot and (f) the theoretical profile for S = 25.76.

At vigorous shaking [Figs. 3.2(d) and 3.2(e)] the Leidenfrost state is observed:
A crystalline cluster floats on top of a dilute gaseous layer. The particular exper-
iment of Fig. 3.2(e) was performed at Γ = 51.5, well above the critical shaking
strength (Γc ≈ 25 for F = 16 layers) at which the Leidenfrost effect sets in. In-
creasing the shaking strength even more causes the crystalline layer to become
thinner and more dilute, until (at some very high value of Γ, beyond the capacity
of our shaker) it will disappear altogether and the whole system becomes gaseous.

Regarding the dependence on the second control parameter (F), a Leidenfrost
state only occurs for F & 8 particle layers. For smaller F one witnesses a direct
transition from the solid phase to a pure granular gas.
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3.3 Order parameter

Now, what is a suitable order parameter to distinguish between the gaseous and
the crystalline phase in the Leidenfrost state? To answer this, we turn to the pair
correlations of the particles in a horizontal strip (y,y+dy) (where dy is chosen to
be equal to a particle diameter):

gy(x) =
1
N ∑

i, j in(y,y+dy)
∑
i 6= j

δ (x− (xi− x j)), (3.2)

Figure 3.3: (a) Experimental Leidenfrost state for Γ = 64.4 (a = 2.5 mm, f = 80 Hz),
with F = 16 layers: Two horizontal strips have been selected, one in the gaseous layer and
one in the crystalline region. (b) The correlation gy(x) between the particle centers (+) in
the gaseous strip, determined via Eq. (3.2). (c) The same in the crystalline strip, showing
a clear periodicity. The shaded area is the order parameter O. (d) O(y) (in arbitrary area
units), determined for a number of strips at different heights. The smoothed fit through
O(y) is used to determine the inversion height hinv, marking the transition from gas to
crystal.
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Figure 3.4: (a) The critical values of the shaking amplitude a and frequency f at which
the transition from the solid to the Leidenfrost state occurs, for a number of experiments
with F = 8, ..,25 layers. The product a f is constant along the transition curve, or equiva-
lently, S≡ ΓA ∝ (a f )2 is constant. (b) The inversion height hinv vs. the shaking parameter
S for F = 16 layers, indicating that the transition is a continuous, second-order phase
transition. The fit through the experimental data is of the form hinv/d ∝ (S−Sonset)1/2.

with N the number of particles in the strip, and xi, j their horizontal positions.
Figure 3.3(b) gives gy(x) for a typical gas-like strip near the bottom, where the
particle positions show hardly any correlation. On the other hand, the strip inside
the floating cluster of Fig. 3.3(c) shows a strong periodic, crystalline correlation.
This clear distinction between periodic and non-periodic behavior is exploited in
the order parameter O, which we define as the modulus of the integrated differ-
ence between gy(x) and its running mean: O is the shaded area in Figs. 3.3(b)
and 3.3(c). Figure 3.3(d) shows O as a function of height y, exhibiting a clear
transition from the gas-like to the crystalline phase. By making a fit through O(y)
in which we smoothen out the oscillations associated with the crystalline order,
the inversion height hinv can be determined as the point where the slope of the fit
is maximal [see Fig. 3.3(d)].

For all experimental runs, we determined from the associated order parame-
ter plots [as in Fig. 3.3(d)] the critical shaking amplitude a and frequency f at
the transition to the Leidenfrost state, i.e., when the inversion height becomes
nonzero for the first time. The result is plotted in Fig. 3.4. Along the curve in the
(a, f )-plane that marks the transition towards the Leidenfrost state [Fig. 3.4(a)],
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the product a f is constant, or equivalently:

S≡ ΓA =
(a2π f )2

gd
(3.3)

is constant at the transition. So S (and not Γ) is the fundamental shaking parameter
in the experiments. We will see later that this is not only true in our experiments,
but also in the theoretical model.

Therefore, in Fig. 3.5 we present the location of the Leidenfrost regime, mark-
ed by crosses (×), in the (S,F)-plane and not the (Γ,F)-plane. The transition from
the solid phase (•) to the Leidenfrost regime occurs along a nearly horizontal line,
i.e., constant S, in agreement with the result from Fig. 3.4. Increasing the shak-
ing strength further, the Leidenfrost state disappears again and the system now
behaves as a pure gas (◦). In experiment, this last transition can only be observed
around the critical number of F ≈ 8 layers; the transition line rises so steeply that
for more layers our shaker is not strong enough to vaporize the Leidenfrost state.

3.4 Hydrodynamic model
To explain the experimental observations theoretically, we use a continuum de-
scription of the granular material. It is to be regarded as a minimal model (disre-
garding the effect of the side walls, which makes it essentially one-dimensional,
and sidestepping the particle nature of the system), not intended to capture all
the details of the experimental system, but to explain the granular Leidenfrost ef-
fect. The model is based on three hydrodynamic equations that have been derived
within the context of the kinetic theory of granular gases [6, 13, 14, 16].

The first one is the standard force balance:

d p
dy

=−mgn, (3.4)

with p(y) the pressure, m the mass of a single particle, and n(y) the number den-
sity.

The second equation is the energy balance between the heat flux through the
vibrated bed and the dissipation due to the inelastic particle collisions:

d
dy

{
κ

dT
dy

+C1ε lT 3/2 dn
dy

}
=

µ
γl

εnT 3/2. (3.5)
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On the left-hand side, the thermal conductivity κ is proportional to the product of
the density n, average particle velocity (∝ T 1/2, with T the granular temperature),
and the mean free path l: κ ∝ nT 1/2l [14]. The second term on the left-hand
side only becomes important when the density gradient dn/dy is large [15]. The
term on the right is equal to the energy loss in one collision (∝ εT ) multiplied
by the total number of collisions (∝ nT 1/2) [6]. The coefficients C1, µ , and γ are
constants.

Thirdly, we have the equation of state [14, 21]:

p = nT
nc +n
nc−n

, (3.6)

which is the ideal-gas law (p = nT ) corrected for excluded volume effects, with
nc = 2/

√
3d2 being the number density of the close-packed hexagonal crystal.

Equation (3.6) is an interpolation between the well-established equations of state
in the low and high density limit [14, 21, 22].

The three equations (3.4)-(3.6) are supplemented by three boundary condi-
tions. The first one states that the granular temperature at the bottom of the con-
tainer is constant: T0 = const. The second condition is that the energy flux must
be zero at the top of the system: limy→∞[κ(y)dT/dy] = 0, and the third condition
is the conservation of particles:

∫ ∞
0 n(y)dy = F nc d.

The above set of equations plus boundary conditions can be solved numer-
ically, using a shooting method for the vanishing heat flux at infinity (second
condition). Two typical examples of the resulting density profiles are shown in
Figs. 3.2(c) and 3.2(f). They agree qualitatively with the experimental profiles,
apart from the oscillations associated with the particle packing, which of course
do not show up in the continuum approach. In all cases we encountered, the term
proportional to dn/dy in the energy balance (3.5) proved to be negligible com-
pared to the dT/dy term. So for our system Eq. (3.5) simplifies to:

d
dy

{
κ

dT
dy

}
=

µ
γ l

εnT 3/2. (3.7)

The equations (3.4), (3.6), and (3.7), plus boundary conditions, can be non-
dimensionalized by introducing the variables ỹ = y/d, ñ = n/nc, and T̃ = T/T0.
Then the following dimensionless control parameter show up in the new set of
equations and conditions: The number of layers F , the inelasticity ε = (1− e2),
and the energy input S defined in Eq. (3.3), just as in the experiment. Thus, from
the four dimensionless control parameters identified originally [see Eq. (3.1) and
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Figure 3.5: Phase diagram of F (number of layers) vs. S (shaking strength), with the
Leidenfrost state showing up between the regions of solid and gas-like behavior. The
symbols represent experimental data: solid phase (•), gas phase (◦), and Leidenfrost state
(×). The shaded area is the Leidenfrost regime according to our hydrodynamic theory.
The dashed curve marks the onset of density inversion at the bottom, dn/dy |y=0= 0, an
essential precursor to the Leidenfrost effect.

below], only three remain because Γ and the dimensionless shaking amplitude A
do not appear individually in the model, but only combined as S≡ ΓA [23].

The parameter S is proportional to the typical kinetic energy of the particles at
the bottom [∝ 1

2m(a f )2] divided by the potential energy needed for a particle to
overcome its own diameter [mgd].

To extract the theoretical Leidenfrost regime in the (S,F)-plane (the shaded
area in Fig. 3.5) we proceed as follows from the calculated density profiles [24]:
The onset of the Leidenfrost effect from the solid state is taken to occur when
a layer of at least 2 particle diameters near the bottom drops below the density
threshold n1 = 0.5nc. When S is increased beyond its critical value Sonset ≈ 16,

49



CHAPTER 3. GRANULAR LEIDENFROST EFFECT

the crystalline as well as the gas-like phase gradually become more dilute. The
breakdown of the Leidenfrost state, where it gives way to a pure gas, is taken
to occur when the part of the profile exceeding n1 = 0.5nc becomes less than 6
particle diameters thick. This upper boundary rises very steeply, e.g., at F = 16
layers Sbreakdown ≈ 2000 [25].

The required minimum thicknesses of the gaseous and the crystalline phase
(2 respective 6 particle diameters) agree with the experimentally observed thick-
nesses in our snapshots. The parameter n1 also reasonably agrees with the snap-
shots; its precise value is chosen such as to yield an optimal overlap between the
experimental and theoretical Leidenfrost regimes in Fig. 3.5.

In Fig. 3.5 we have also included the dashed curve where dn/dy |y=0 goes
through zero, i.e., the onset of the density inversion studied earlier by Meerson
et al. [6]. Above this curve dn/dy |y=0 is positive, which paves the way for the
Leidenfrost effect, but in itself does not mark a phase transition yet. Physically,
the granular material is still fully either a gas or a solid at the dashed line [as can
be verified via the order parameter O(y)].

3.5 Conclusion

In conclusion, the granular Leidenfrost effect has been demonstrated experimen-
tally for the first time, in a 2-D setup: When the shaking strength S exceeds a
critical value, and for sufficiently many particle layers, a dense cluster with a
hexagonal packing floats on top of a gaseous region. The two co-existing phases
in this hybrid state (solid and gas) can be distinguished from each other by their
difference in crystalline order, through the order parameter O(y). The experi-
mental observations are quantitatively explained by our hydrodynamic model, as
shown by the density profiles in Fig. 3.2 and the (S,F)-diagram of Fig. 3.5.

Acknowledgments: We thank I. Goldhirsch, B. Meerson, and T. Pöschel for stim-
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CHAPTER 4. GRANULAR CONVECTION

Buoyancy driven granular convection is studied for a shallow, ver-
tically shaken granular bed in a quasi 2-D container. At sufficiently
strong shaking counter-rotating convection rolls form with pronounced
density variations. These rolls are also found in our Molecular Dy-
namics simulations. The onset of convection is quantitatively ex-
plained through a linear stability analysis of the hydrodynamic con-
tinuum model presented in Chapter 3.

4.1 Introduction
Ordinary fluids heated from below develop, when the heating is strong enough, so-
called Rayleigh-Bénard convection rolls that effectively mix the cold and hot parts
of the fluid [1–7]. As we have found in Chapter 2, similar convection rolls are ob-
served in a system of vibrated granular particles, when the shaking is sufficiently
strong, see Fig 4.1 [8]. Highly mobile particles move up in the dilute regions and
are then sprayed sideways towards the dense clusters. The resemblance with an
ordinary fluid is indeed remarkable, given the fact that the particles are not bound
to each other by any adhesive forces.

In this paper we will model the granular convection in analogy with the hy-
drodynamic theory known from Rayleigh-Bénard convection, adapting it where
necessary to the granular context. This study fits into the general context of what
is probably the most important question in granular research today: “To what
extent can hydrodynamic-like models describe phenomena observed in granular
systems?” [9–13]. We will exploit experiment, numerical simulation, and theo-
retical analysis to provide insight in the underlying physics of buoyancy driven
granular convection in vertically shaken granular matter.

Granular convection has been studied extensively at mild fluidization [14–39],
for which the convection is boundary-driven. However, the buoyancy-driven con-
vection observed here occurs at high fluidization and this has been reported rarely
in the literature. We are aware of only one numerical study by Paolotti et al. [40]
and one theoretical study by Khain and Meerson [41]. Here we present to our
knowledge the first experimental observation. In the numerical model by Paolotti
et al. the container walls were taken to be perfectly elastic, leading to convec-
tion patterns in which the rolls were either moving up or down along the side-
walls, whereas in our system (with dissipative walls) they always move down,
see Fig 4.1. Another difference is that we observe that our convective state orig-
inates from an other steady state of vertically shaken granular matter, namely the
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Figure 4.1: Experiment, MD simulation, and Theory: (a) The quasi 2-D experimental
setup showing granular convection for F = 6.2 layers of d = 1.0 mm steel beads shaken
at a = 3.0 mm and f = 55.0 Hz (dimensionless shaking strength S = 110). The adjustable
container length is L/d = 101 in this experiment. Two convective cells are present here,
each consisting of a pair of counter-rotating rolls. The beads move up in the dilute re-
gions (high granular temperature) and are sprayed sideways to the three dense clusters
(low granular temperature). The sidewalls induce a downward motion due to the extra
dissipation, so we always find a cluster at the wall. (b) Molecular Dynamics simulation
for F = 6 particle layers shaken at a = 3.0 mm and f = 71 Hz (S = 183). The red colored
(dark) particles are moving upward and the blue (light) ones downward. (c) The density
profile according to our hydrodynamic theory for F = 6 layers and a dimensionless shak-
ing strength of S = 110. The color coding indicates the regions with high density (black)
and low density (white). (d) The corresponding theoretical velocity profile showing two
pairs of counter-rotating convection rolls.
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Figure 4.2: Experiment: Breakthrough of a convection roll for F = 11.1 layers of steel
beads shaken at an amplitude of a = 3.0 mm and frequency f = 45 Hz (dimensionless
shaking strength S = 75). These pictures show approximately one-third of the total con-
tainer length L/d = 101, close to the right wall, from an experiment in which the fre-
quency was linearly increased from f = 42 Hz to f = 48 Hz at a rate of 90 Hz/min. The
breakthrough of the convection roll, starting from the Leidenfrost state, took place in less
than 1 second, i.e., ∆ f < 1.5 Hz.

granular Leidenfrost state (see Fig. 4.2).
Khain and Meerson studied the onset of thermal convection in a granular gas

using granular hydrodynamics. The geometry of their system was an infinite two-
dimensional horizontal layer with a (fully elastic) closed top. In contrast, our ex-
periment has a free surface instead of a closed top, which calls for a different kind
of modelling. Another, even more important, difference is that Khain and Meer-
son [41] performed linear stability analysis on a homogeneous base state with a
linear temperature profile to study the onset of convection, whereas we start out
from the inhomogeneous Leidenfrost state in which a solid phase is supported by a
gas phase. This state is obtained numerically as the solution of the hydrodynamic
model by Eshuis et al. [42], see Ch. 3, and we will show that the experimen-
tally observed onset of convection is quantitatively explained by a linear stability
analysis around this state.

4.2 Experimental Setup and Results

Our experimental setup (Fig. 4.1) consists of a quasi 2-D perspex container of
dimensions L×D×H with an adjustable container length L = 10− 202 mm, a
depth D = 5 mm, and a height H = 150 mm. The container is partially filled with
steel beads of diameter d = 1.0 mm, density ρ = 7800 kg/m3, and coefficient
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Figure 4.3: Experiment vs. MD simulation: Onset of convection. (a,b,c,d) The onset of
convection for F = 11.1 layers of steel beads in a container of length L/d = 101 shaken
at an amplitude of a = 3.0 mm and frequency f = 45 Hz (S = 75). The frequency was
linearly increased in the range of f = 42− 48 Hz at 90 Hz/min. The transition from
the steady Leidenfrost state to fully developed convection took place in 1.5 seconds, i.e.,
∆ f < 2.3 Hz. (e,f,g,h) The breakthrough process in a Molecular Dynamics simulation
for the same number of layers as in experiment with shaking amplitude a = 3.5 mm and
frequency f = 80 Hz (S = 315).
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of normal restitution e ≈ 0.9. The setup is mounted on a sinusoidally vibrating
shaker with tunable frequency f and amplitude a. The experiments are recorded
with a high-speed camera capturing 2000 frames per run at a frame rate of 1000
frames per second.

The natural dimensionless control parameters to analyze the experiments are:

• the shaking parameter for strong fluidization [8]:

S =
a2ω2

gd
, (4.1)

with ω = 2π f and g = 9.81 m/s2. The shaking strength S is the ratio of
the kinetic energy inserted into the system by the vibrating bottom and the
potential energy associated with the particle diameter d,

• the number of bead layers F ,

• the inelasticity parameter ε = (1− e2),

• the aspect ratio L/d.

The parameter ε is taken to be constant in this paper, since we ignore the velocity
dependence and use steel beads throughout unless otherwise stated. The aspect
ratio L/d is varied in the range of L/d = 10−202 by adjusting the container length
L in steps of 4 mm; So, we will systematically vary all dimensionless parameters
(except the inelasticity parameter ε) by changing the amplitude a, the frequency
f , the number of layers F and the container length L.

From where do the convection rolls in our granular system originate? At high
fluidization the rolls are formed out of the Leidenfrost state, in which a cluster of
slow almost immobile particles is supported by a gaseous region of fast particles
underneath. Figure 4.2 shows how a number of particles becomes more mobile
(higher granular temperature) than the surrounding ones and creates an opening
in the floating cluster of the Leidenfrost state. These particles have picked up an
excess of energy from the vibrating bottom (due to a statistical fluctuation) and
collectively move upwards, very much like the onset of Rayleigh-Bénard convec-
tion in a classical fluid heated from below. This upward motion of the highly
mobile beads must be balanced by a downward movement of neighboring parti-
cles, leading to the formation of a convection roll.

The downward motion is most easily accomplished at the sidewalls, due to the
extra source of dissipation (i.e., the friction with the walls), and for this reason
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Figure 4.4: Experiment: The number of convective cells k for increasing container length
L/d, keeping the number of layers fixed at F = 6.2 and the shaking strength at S = 63
(a = 2.5 mm and f = 50 Hz): (a) k = 1 (one pair of convection rolls), (b) k = 2 (two
pairs), (c) k = 3, (d) k = 4. (e) The number of convective cells k as a function of the
container length L/d for the same parameter values as in (a)-(d). The dotted vertical lines
denote a situation in which the system continuously switches between two states with a
different number of rolls, as explained in the text. The intrinsic cell length Λ, determined
from the linear fit through the data points, is Λ = 43 mm.
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the first convection roll is always seen to initiate near one of the two sidewalls.
As shown in Fig. 4.3, this first roll within a second triggers the formation of rolls
along the entire length of the container, leading to a fully developed convection
pattern.

To find out how these fully developed convection patterns depend on the di-
mensionless control parameters, we systematically varied them individually, start-
ing with the aspect ratio L/d:

Figure 4.4 shows that when the aspect ratio L/d is increased, the number of
convection rolls increases. Let k be the number of observed convective cells,
each consisting of a pair of counter-rotating rolls. We find that k grows linearly
with the aspect ratio L/d, see Fig. 4.4(e). This indicates that the cells have an
intrinsic typical length Λ independent of the aspect ratio. This is again similar
to the rolls in Rayleigh-Bénard convection for a normal fluid, which also have an
intrinsic length. The intrinsic cell length (Λ = 43 mm) is determined from the
linear fit through the experimental data and is indicated by the straight, black line
in Fig. 4.4(e).

The dotted vertical lines in Fig. 4.4(e) represent an interesting feature. For
these aspect ratios the system continuously switches between two states: The
length of the system here is either too long or too short to fit k intrinsic cell lengths,
and the system tries to release this frustration by going towards a situation with
one convection roll extra or less. But the system cannot hold this state either, since
at that moment there is no cluster at one of the sidewalls, and due to the extra dis-
sipation with the wall the previous frustrated situation with an integer number of
cells k is restored, repeating the series of events indefinitely. Only for a very small
aspect ratio of L/d we observed a stable state with k = 1/2, i.e., one convection
roll with one cluster. The aspect ratio here is too small to allow for any switching
to a neighboring state, so this specific situation is stabilized.

The influence of the other two parameters, the shaking parameter S and the
number of layers F , will be presented after the introduction of the numerical sim-
ulations in Section 4.3 and the theoretical stability analysis in Section 4.4.
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4.3 Molecular Dynamics simulations
We have used Molecular Dynamics (MD) simulations, also known as discrete
element method (DEM) [43–51], to numerically study the quasi 2-D system dis-
cussed in the previous Section. The container has a length L/d = 202, depth
D/d = 5, and height H/d = 150. It contains either N = 7467 or N = 11200 iden-
tical particles (diameter d = 1.0 mm, density ρ = 7800 kg/m3, and hence mass
m = 4.1 mg), corresponding to F ≈ 6 and F ≈ 11 particle layers, respectively [52].
We applied sinusoidal vibrations to the system with amplitude a and frequency f ,
i.e., the trajectory of the vibrating bottom is y(t) = asin(2π f t).

The inelastic particle collisions are modelled by the force-displacement rela-
tion: Since all the forces between the particles that are in contact with each other
(or with the wall) are known, and also the positions and velocities of the particles,
we can integrate Newton’s equations of motion:

m
d2~ri

dt2 = ~fi +m~g for the translational motion, (4.2)

Ii
d~ωi

dt
= ~qi for the rotational motion, (4.3)

with~ri the position of particle i, ~fi = ∑~fi the total force on particle i,~g the gravita-
tional acceleration, Ii the moment of inertia, ~ωi = d~ϕi/dt the angular velocity, and
~qi the total torque on the particle. Equation (4.2) is a set of D +D(D−1)/2 cou-
pled ordinary differential equations solved in D = 3 dimensions using numerical
integration schemes [43, 44, 53].

The inelasticity of the particle interaction is modelled by the linear spring-
dashpot model, which describes the particle contact as a damped harmonic oscil-
lator [54]. This is the simplest normal contact force model that takes excluded
volume effects into account. The interactions of the particles with the walls are
described by the same set of equations with a different contact criterion implying
an infinite wall mass. All simulations have been carried out without tangential
forces and torques, which means that we assume perfectly smooth spherical par-
ticles.

The simulations are either initialized by preparing a Leidenfrost state in the
system, or by starting up from the final configuration of the preceding simula-
tion performed at lower shaking amplitude a. The latter procedure considerably
reduces the transient time for which a stable, steady situation is observed in the
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system. The transient time is short (less than 10 vibration periods) when one is
well inside the Leidenfrost or convection regime. It grows however drastically
(roughly by a factor 10) at the phase transition between these two regions. There-
fore we have performed long runs of 10 s, which go well beyond this transient
time, to obtain a situation in dynamic equilibrium. In these simulations we ob-
served hysteresis effects around the onset of convection.

We have varied the friction the particles experience when they hit the walls
and found that the onset of convection occurs at a smaller shaking strength S if
the wall friction is lowered. Usually we have used the same restitution coeffi-
cient for the wall interactions and for the particle-particle interactions: ewall = e.
However, the collisions with the front and back wall (a large portion of all the
collisions) involve smaller velocities. In this situation, the velocity dependence of
the restitution coefficient may start to play a role [55, 56] and can thereby effec-
tively increase the restitution coefficient of the particle-wall collisions. This partly
accounts for the fact that in the current simulations the shaking strength S required
to get convection is much larger than the corresponding value of S in experiments
and theory. In addition the roll friction between the particles is set to a relatively
high value in the current simulations. This makes the total dissipation artificially
large and explains why the S-value required in the MD simulations is too high.
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4.4 Theoretical Model

In this Section we are going to explain the experimental and numerical results by
a hydrodynamic theory. Our model is analogous to the one used to determine the
onset of Rayleigh-Bénard convection in classical fluids in which linear stability
analysis is applied to the homogeneous base state [57]. We perform basically
the same procedure with a more intricate base state, namely the inhomogeneous
Leidenfrost state with the dense cluster on top of the gaseous region, and with
various special constitutive relations due to the granular nature of the problem.

We will show that the linear stability analysis quantitatively captures the criti-
cal shaking strength for which the onset of convection is observed in experiment.
Moreover, we will show that the theoretically determined cell length Λ reasonably
agrees with the experimental observations.

4.4.1 Granular hydrodynamics

The basis of our analysis is formed by the hydrodynamic equations in two di-
mensions, which describe the three hydrodynamic continuum fields: The number
density n(x,y, t), the velocity field ~u(x,y, t), and the temperature T (x,y, t) [57].

The first continuum field, the density, is described by the continuity equation
(or mass balance) and describes how the density varies in time:

∂n
∂ t

+~u ·~∇n+n~∇ ·~u = 0. (4.4)

Secondly, the time-variations of the components of the two-dimensional ve-
locity field ~u are governed by the Navier-Stokes equation (i.e., the momentum or
force balance):

mn
(

∂~u
∂ t

+~u ·~∇~u
)

= mn~g−~∇p+~∇ ·
(

µ
[
~∇~u+

(
~∇~u

)T
])

+~∇
(

λ~∇ ·~u
)

, (4.5)

in which m is the mass of a single particle, p the pressure, ~g the gravitational
acceleration, µ the shear viscosity and λ the second viscosity. The velocity field
~u is a vector in two dimensions, so we have two equations, one for ∂ux/∂ t and
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one for ∂uy/∂ t:

mn
[

∂ux

∂ t
+

(
ux

∂ux

∂x
+uy

∂ux

∂y

)]
= − ∂ p

∂x
+2

∂
∂x

(
µ

∂ux

∂x

)

+
∂
∂y

[
µ

(
∂ux

∂y
+

∂uy

∂x

)]
+

∂
∂x

[
λ

(
∂ux

∂x
+

∂uy

∂y

)]
. (4.6)

mn
[

∂uy

∂ t
+

(
ux

∂uy

∂x
+uy

∂uy

∂y

)]
= − mng− ∂ p

∂y
+2

∂
∂y

(
µ

∂uy

∂y

)

+
∂
∂x

[
µ

(
∂ux

∂y
+

∂uy

∂x

)]
+

∂
∂y

[
λ

(
∂ux

∂x
+

∂uy

∂y

)]
. (4.7)

The third continuum field is the granular temperature, which is defined as
the velocity fluctuations of the particles around the mean velocity, i.e., 1

2kBT =
1
2m

(〈~u 2〉−〈~u〉2) with kB = 1. The temperature change in time is described by
the energy equation or energy balance:

n
∂T
∂ t

+n~u ·~∇T = ~∇ ·
(

κ~∇T
)
− p

(
~∇ ·~u

)
− I, (4.8)

where κ is the thermal conductivity and I is the dissipative term due to the inelastic
particle collisions. In Eq. (4.8) we did not include terms which are quadratic in
~∇~u.

4.4.2 Constitutive relations
The granular hydrodynamic equations of Eqs. (4.4)-(4.8) are to be complemented
by constitutive relations for the pressure field p, the energy dissipation rate I, and
the transport coefficients κ , µ , and λ . Since our system combines dilute, gaseous
regions with clusters where the density approaches unity, we need to take excluded
volume effects into account.

First we have the equation of state for a two dimensional granular fluid [42,
58, 59]:

p = nT
nc +n
nc−n

, with nc =
2√
3d2

, (4.9)

which is the ideal gas law with a VanderWaals-like correction [58] to account for
the excluded area with nc = 2/

√
3d2 the number density of a hexagonal close-

packed crystal.
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The second constitutive relation is the energy dissipation rate I [42, 58, 59]:

I =
ε

γc`
nT

√
T
m

. (4.10)

Here the inelasticity parameter ε = (1−e2), which we already identified as one of
the experimental control parameters of this system, shows up also in the theoreti-
cal model. The value for the constant γc = 2.26 has been adopted from Grossman
et al. [58].

The first transport coefficient is the thermal conductivity κ [42, 58, 59]:

κ =
n(α`+d)2

`

√
T
m

, (4.11)

with the mean free path ` = (nc−n)/[
√

8nd(nc−an)] according to Grossman et
al. [58], with the constant a = 1−

√
3/8 = 0.39 and nc the number density of a

hexagonal close-packed crystal. For the constant α we adopted the value α = 0.6
from Meerson et al. [59].

In the literature various choices are proposed for the shear viscosity µ in gran-
ular systems [31, 35, 60], and in Appendix A we will show that the results for our
system strongly depends on the relation chosen for µ . We take:

µ = mPrκ, (4.12)

in which Pr is the Prandtl number, which measures the ratio between convective
and diffusive energy transfer. This dimensionless number is in principle unknown
and we will show that in our system Pr is a constant of order unity, just as it is
for molecular gases. Because the viscosity µ for our granular system behaves so
analogously to classical fluids, we use the Stokes approximation (applicable for
incompressible fluids, implying that the bulk viscosity is zero) to get the expres-
sion for the second viscosity λ [31, 35, 60]:

λ =−2
3

µ. (4.13)

4.4.3 Linearization around the Leidenfrost state
As the model presented above is an extension of the one used in [42], see Ch. 3, the
Leidenfrost state nL(y), TL(y) is a numerical solution, and we will now proceed
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to linearize Eqs (4.4), (4.6), (4.7), and (4.8) around this state by adding a small
perturbation to it:

n(x,y, t) = nL(y) + δn(x,y, t), (4.14)
ux(x,y, t) = 0 + δux(x,y, t), (4.15)
uy(x,y, t) = 0 + δuy(x,y, t), (4.16)
T (x,y, t) = TL(y) + δT (x,y, t). (4.17)

The next step is to insert this perturbed Leidenfrost state in the four hydrody-
namic Eqs. (4.4), (4.6), (4.7), and (4.8). For every equation we have sorted the
terms up to O(δ 2) in the following way: δn, δux, δuy, and δT , each on its own
line.

The linearized version of the continuity equation of Eq. (4.4) then reads:

∂ (δn)
∂ t

= 0

− nL
∂ (δux)

∂x

− ∂nL

∂y
δuy−nL

∂ (δuy)
∂y

+ 0. (4.18)

The force balance for the x-direction of Eq. (4.6) is linearized as follows

mnL
∂ (δux)

∂ t
= − ∂ p

∂n

∣∣∣
L

∂ (δn)
∂x

+ 2µL
∂ 2(δux)

∂x2 +
∂
∂y

(
µL

∂ (δux)
∂y

)
+λL

∂ 2(δux)
∂x2

+
∂
∂y

(
µL

∂ (δuy)
∂x

)
+λL

(
∂ 2(δuy)

∂x∂y

)

− ∂ p
∂T

∣∣∣
L

∂ (δT )
∂x

. (4.19)
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Linearizing the force balance for the y-direction (4.7) yields:

mnL
∂ (δuy)

∂ t
= −

[
mg+

∂
∂y

(
∂ p
∂n

∣∣∣
L

)]
δn− ∂ p

∂n

∣∣∣
L

∂ (δn)
∂y

+ µL
∂ 2(δux)

∂x∂y
+

∂λL

∂y
∂ (δux)

∂x
+λL

∂ 2(δux)
∂x∂y

+ 2
∂ µL

∂y
∂ (δuy)

∂y
+2µL

∂ 2(δuy)
∂y2 + µL

∂ 2(δuy)
∂x2 +

∂λL

∂y
∂ (δuy)

∂y

+λL
∂ 2(δuy)

∂y2

− ∂
∂y

(
∂ p
∂T

∣∣∣
L

)
δT − ∂ p

∂T

∣∣∣
L

∂ (δT )
∂y

. (4.20)

Finally, the energy balance of Eq. (4.8) reads in linearized form:

nL
∂ (δT )

∂ t
=

[
− ∂ I

∂n

∣∣∣
L
+

∂
∂y

(
∂κ
∂n

∣∣∣
L

)
∂TL

∂y
+

∂κ
∂n

∣∣∣
L

∂ 2TL

∂y2

]
δn

+
∂κ
∂n

∣∣∣
L

∂TL

∂y
∂ (δn)

∂y

− pL
∂ (δux)

∂x

− nL
∂TL

∂y
δuy− pL

∂ (δuy)
∂y

+
[

∂
∂y

(
∂κ
∂T

∣∣∣
L

)
∂TL

∂y
+

∂κ
∂T

∣∣∣
L

∂ 2TL

∂y2 −
∂ I
∂T

∣∣∣
L

]
δT

+
(

∂κL

∂y
+

∂κ
∂T

∣∣∣
L

∂TL

∂y

)
∂ (δT )

∂y

+κL
∂ 2(δT )

∂x2 +κL
∂ 2(δT )

∂y2 . (4.21)

4.4.4 Boundary conditions
The linearized hydrodynamic equations are accompanied by boundary conditions
for the perturbed density, velocities, and temperature. First, conservation of parti-
cles must apply:

∫ L

0
dx

∫ ∞

0
dyn(x,y, t) = F nc d →

∫ L

0
dx

∫ ∞

0
dyδn(x,y, t) = 0. (4.22)
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Since the Leidenfrost density obeys
∫ ∞

0 dynL(y) = Ntotal, so the integral over the
perturbed number density is zero. Here the number of layers F (already identified
as a control parameter in the experiments) arises as a relevant control parameter
also in the theoretical model. As we will see later, this integral relation will not
be used directly in the mathematical solution of the model, but still reflects an
essential feature of the system.

We assume that the velocity field in the x-direction has an extremum (either a
maximum or a minimum) at the bottom of the container, so the derivative of δux
should be zero here:

∂ (δux)
∂y

∣∣∣
y=0

= 0. (4.23)

The velocity component in the y-direction necessarily vanishes at the bottom, and
consequently

δuy(x,0, t) = 0. (4.24)

For the boundary conditions at the top (y → ∞) we assume that the velocity field
vanishes altogether, leading to the following relations for the perturbed velocity
fields:

lim
y→∞

δux(x,y, t) = 0, (4.25)

lim
y→∞

δuy(x,y, t) = 0. (4.26)

As we impose a granular temperature T0 at the bottom [with T0 ∝ m(a f )2

directly related to the kinetic energy imparted to the particles by the vibrating
bottom], the boundary condition for the perturbed temperature should be zero:

δT (x,0, t) = 0. (4.27)

Finally we have the boundary condition for the granular temperature at the top,
which we assume to vanish just like the velocity field. So, the condition for per-
turbed temperature at the top becomes

lim
y→∞

δT (x,y, t) = 0. (4.28)

As will be seen in Section 4.4.6 these seven boundary conditions are sufficient to
describe the system.
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4.4.5 Making the hydrodynamic equations dimensionless
The next step we take is to non-dimensionalize our linearized hydrodynamic equa-
tions and boundary conditions. To this end we first have to choose non-dimensional
units. First, the density is made dimensionless by the number density nc of a
hexagonal close packing in 2-D:

n 7→ ñ =
n
nc

, with nc =
2√
3d2

. (4.29)

Secondly, the temperature field is made dimensionless by the imposed granu-
lar temperature at the bottom T0:

T 7→ T̃ =
T
T0

. (4.30)

For the dimensionless length scales in our system we can choose between
the container length L and the particle diameter d. Since the latter one is kept
constant throughout our study, and the first one not, we non-dimensionalize the
length scales as follows:

x 7→ x̃ =
x
d
, (4.31)

y 7→ ỹ =
y
d
, (4.32)

and we do the same for the mean free path

` =
1√
8nd

nc−n
nc−an

7→ ˜̀=
`

d
=

√
3

32

[
1
ñ

(
1− ñ

1−añ

)]
, (4.33)

with a = 1−
√

3/8 [58].
To make the time t dimensionless we make use of the dimensionality of the

granular temperature (energy), the mass of one particle m, and the diameter d:

t 7→ t̃ = t

√
T0/m
d

, (4.34)

and consequently the velocity fields ux and uy become in dimensionless form:

ux 7→ ũx =
ux√
T0/m

, (4.35)

uy 7→ ũy =
uy√
T0/m

. (4.36)
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By inserting the dimensionless fields into the hydrodynamic equations we de-
duce the non-dimensional form of p, I and the transport coefficients of Eqs. (4.9)-
(4.13). The equation of state then becomes:

p = nT
nc +n
nc−n

7→ p̃ =
p

ncT0
= ñT̃

1+ ñ
1− ñ

. (4.37)

The dimensionless form of the energy dissipation rate I is:

I =
ε
γ`

nT

√
T
m

7→ Ĩ =
Id

ncT0
√

T0/m
=

ε
γ

ñT̃
√

T̃
˜̀ . (4.38)

The first transport coefficient κ now reads:

κ =
n(α`+d)2

`

√
T
m

7→ κ̃ =
κ

ncd
√

T0/m
=

(
α ˜̀+1

)2

˜̀ ñ
√

T̃ . (4.39)

Eq. (4.12) relates the shear viscosity µ to the thermal conductivity κ , so µ now
reads in dimensionless form:

µ = mPrκ 7→ µ̃ = Pr κ̃, (4.40)

and from Eq. (4.13) the second viscosity λ follows immediately:

λ =−2
3

µ =−2
3

mPrκ 7→ λ̃ =−2
3

Pr κ̃. (4.41)

We can now write the hydrodynamic equations in dimensionless form, starting
with the linearized continuity equation of Eq. (4.18):

∂ (δ ñ)
∂ t̃

= 0

− ñL
∂ (δ ũx)

∂ x̃

− ∂ ñL

∂ ỹ
δ ũy− ñL

∂ (δ ũy)
∂ ỹ

+ 0. (4.42)
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The dimensionless form of the force balance in the x-direction [Eq. (4.19)] be-
comes:

ñL
∂ (δ ũx)

∂ t̃
= − ∂ p̃

∂ ñ

∣∣∣
L

∂ (δ ñ)
∂ x̃

+ 2µ̃L
∂ 2(δ ũx)

∂ x̃2 +
∂
∂ ỹ

[
µ̃L

∂ (δ ũx)
∂ ỹ

]
+ λ̃L

∂ 2(δ ũx)
∂ x̃2

+
∂
∂ ỹ

[
µ̃L

∂ (δ ũy)
∂ x̃

]
+ λ̃L

∂ 2(δ ũy)
∂ x̃∂ ỹ

− ∂ p̃

∂ T̃

∣∣∣
L

∂ (δ T̃ )
∂ x̃

. (4.43)

The force balance for the y-direction [Eq. (4.20)] takes the following dimension-
less form:

ñL
∂ (δ ũy)

∂ t̃
= − 1

S
δ ñ− ∂

∂ ỹ

(
∂ p̃
∂ ñ

∣∣∣
L

)
δ ñ− ∂ p̃

∂ ñ

∣∣∣
L

∂ (δ ñ)
∂ ỹ

+ µ̃L
∂ 2(δ ũx)

∂ x̃∂ ỹ
+

∂ λ̃L

∂ ỹ
∂ (δ ũx)

∂ x̃
+ λ̃L

∂ 2(δ ũx)
∂ x̃∂ ỹ

+ 2
∂ µ̃L

∂ ỹ
∂ (δ ũy)

∂ ỹ
+2µ̃L

∂ 2(δ ũy)
∂ ỹ2 + µ̃L

∂ 2(δ ũy)
∂ x̃2 +

∂ λ̃L

∂ ỹ
∂ (δ ũy)

∂ ỹ

+λ̃L
∂ 2(δ ũy)

∂ ỹ2

− ∂
∂ ỹ

(
∂ p̃

∂ T̃

∣∣∣
L

)
δ T̃ − ∂ p̃

∂ T̃

∣∣∣
L

∂ (δ T̃ )
∂ ỹ

. (4.44)

In the first term on the right hand side appears the dimensionless shaking strength
S:

S =
T0

mgd
with T0 ∝ m(a f )2. (4.45)

This S was already introduced as the governing shaking parameter in the context
of our experiments, see Eq. (4.1). In particular we did not use Γ = aω2/g the
more familiar dimensionless acceleration. This choice is now justified by hydro-
dynamic theory.
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Finally, the energy balance of Eq. (4.21) in dimensionless form becomes:

ñL
∂ (δ T̃ )

∂ t̃
=

[
− ∂ Ĩ

∂ ñ

∣∣∣
L
+

∂
∂ ỹ

(
∂ κ̃
∂ ñ

∣∣∣
L

)
∂ T̃L

∂ ỹ
+

∂ κ̃
∂ ñ

∣∣∣
L

∂ 2T̃L

∂ ỹ2

]
δ ñ

+
∂ κ̃
∂ ñ

∣∣∣
L

∂ T̃L

∂ ỹ
∂ (δ ñ)

∂ ỹ

− p̃L
∂ (δ ũx)

∂ x̃

− ñL
∂ T̃L

∂ ỹ
δ ũy− p̃L

∂ (δ ũy)
∂ ỹ

+

[
∂
∂ ỹ

(
∂ κ̃
∂ T̃

∣∣∣
L

)
∂ T̃L

∂ ỹ
+

∂ κ̃
∂ T̃

∣∣∣
L

∂ 2T̃L

∂ ỹ2 −
∂ Ĩ

∂ T̃

∣∣∣
L

]
δ T̃

+

(
∂ κ̃L

∂ ỹ
+

∂ κ̃
∂ T̃

∣∣∣
L

∂ T̃L

∂ ỹ

)
∂ (δ T̃ )

∂ ỹ

+κ̃L
∂ 2(δ T̃ )

∂ x̃2 + κ̃L
∂ 2(δ T̃ )

∂ ỹ2 (4.46)

We now proceed with writing the boundary conditions in dimensionless form.
We start with the conservation of particles relation of Eq. (4.22):

∫ L/d

0
dx̃

∫ ∞

0
dỹδ ñ(x̃, ỹ, t̃) = 0. (4.47)

The boundary condition for the velocity fields in x- and y-direction at the bot-
tom [Eqs. (4.23) and (4.24)] become:

∂ (δ ũx)
∂ ỹ

∣∣∣
ỹ=0

= 0, (4.48)

δ ũy(x̃,0, t̃) = 0, (4.49)

and those for the velocity fields at the top [Eqs (4.25) and (4.26)] take the form:

lim
ỹ→∞

δ ũx(x̃, ỹ, t̃) = 0, (4.50)

lim
ỹ→∞

δ ũy(x̃, ỹ, t̃) = 0. (4.51)
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Equation (4.27) for the imposed temperature at the bottom becomes in dimen-
sionless form:

δ T̃ (x̃,0, t̃) = 0, (4.52)

and finally, the temperature condition at the top [Eq. (4.28)] becomes:

lim
ỹ→∞

δ T̃ (x̃, ỹ, t̃) = 0. (4.53)

4.4.6 Formulation of the eigenvalue problem
Having brought the linearized hydrodynamic equations plus the accompanying
boundary conditions in dimensionless form, we are now ready to formulate the
eigenvalue problem. We start by applying the following Ansatz for the form of
the perturbations:

δ ñ = N(ỹ)eikxx̃eγ t̃ , (4.54)

δ ũx = U(ỹ)eikxx̃eγ t̃ , (4.55)

δ ũy = V (ỹ)eikxx̃eγ t̃ , (4.56)

δ T̃ = Θ(ỹ)eikxx̃eγ t̃ . (4.57)

Here N(ỹ), U(ỹ), V (ỹ), and Θ(ỹ) are the vertical profiles of the perturbation fields.
The terms with eikxx̃ contain the wave number kx, expressing the periodicity in
the x-direction, see for example Fig. 4.1. In the factor eγ t̃ we have γ = γR + iγI ,
where the real part γR denotes the growth/decay rate of the perturbation and the
imaginary part γI indicates the frequency of the wave. In the current study the
predicted instabilities are found to be stationary, i.e., γI = 0 and hence γ = γR.
So when γ < 0 the Leidenfrost state is stable and when γ > 0 it is unstable. In
the latter case the Leidenfrost state gives way to convection rolls for this specific
value of γ , i.e., the eigenvalue.

This Ansatz is inserted in the four hydrodynamic equations, so the continuity
equation of Eq. (4.42) then takes the following form:

0 = γN
+ ñLkxU

+
∂ ñL

∂ ỹ
V + ñLV ′

+ 0. (4.58)

75



CHAPTER 4. GRANULAR CONVECTION

The force balance for the x-direction [Eq. (4.43)] transforms into:

0 = − ∂ p̃
∂ ñ

∣∣∣
L
kxN

+
[
ñLγ +

(
2µ̃L + λ̃L

)
k2

x

]
U− ∂ µ̃L

∂ ỹ
U ′− µ̃LU ′′

+
∂ µ̃L

∂ ỹ
kxV +

(
µ̃L + λ̃L

)
kxV ′

− ∂̃ p

∂ T̃

∣∣∣
L
kxΘ, (4.59)

and the force balance for the y-direction [Eq. (4.44)] becomes:

0 =
[

1
S

+
∂
∂ ỹ

(
∂ p̃
∂ ñ

∣∣∣
L

)]
N +

∂ p̃
∂ ñ

∣∣∣
L
N′

− ∂ λ̃L

∂ ỹ
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+

∂ λ̃L

∂ ỹ
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Finally, the energy balance of Eq. (4.46) takes the form:
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− ∂ κ̃

∂ ñ
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These four equations (4.58)-(4.61) can be written as a 4× 4 matrix problem for
the column vector (N,U,V,Θ) and its first and second derivative:

A ·
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

N
U
V
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
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′′
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
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′
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


N
U
V
Θ


 = 0, (4.62)

where the apostrophe denotes differentiation with respect to ỹ. The elements of the
4×4 matrices A, B, and C can be read from the hydrodynamic equations (4.58)-
(4.61):
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∂ ỹ (µ̃L + λ̃L)kx 0
∂ p̃
∂ ñ
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∣∣
L

)
∂ T̃L
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−κ̃Lk2
x − ∂ κ̃

∂ T̃

∣∣
L

∂ 2T̃L
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The matrices A, B and C are functions of the height ỹ through their dependence
on the unperturbed Leidenfrost state ñL(ỹ), T̃L(ỹ). To calculate the matrices A, B
and C we need the constitutive relations and their various derivatives (pressure p̃,
energy dissipation rate Ĩ, thermal conductivity κ̃ , shear viscosity µ̃ , and second
viscosity λ̃ ). These are all given in Appendix B.

Note that the first equation in Eq. (4.62) is of first order, whereas the other three
are of second order, such that the seven boundary conditions from Section 4.4.4
completely determine the solution.

4.4.7 Linear stability analysis using spectral methods

To solve the eigenvalue problem of Eq. (4.62), which is a matrix problem consist-
ing of four coupled ordinary differential equations, standard methods for linear
equations can be applied.

The goal is to locate the onset of convection by finding the eigenvalues γ for
which the Leidenfrost state becomes unstable (i.e., γ > 0). The wave number
kx corresponding to the most unstable mode (maximal γ-value) determines the
dominant perturbation that will start the convection for this particular Leidenfrost
state.

We use the spectral-collocation method to perform the linear stability analysis.
Spectral methods find their origin in the 1940s and were revived by Orszag [61]
in the 1970s, after which they gradually became mainstream in scientific compu-
tation [62]. These methods are designed to solve differential equations, making
use of trial functions (also known as expansion or approximating functions) and
the so-called test or weight functions.

The trial functions represent the approximate solution of the differential equa-
tions. They are linear combinations of a suitable family of basis functions, e.g.,
trigonometric (Fourier) polynomials; these functions are global in contrast to the
basis functions used for instance in finite-element or finite-difference methods,
which are local. The test functions guarantee that the differential equations and
the boundary conditions are satisfied at the collocation points.

Thanks to the linearity of the problem we have various options for the trial
basis functions, namely trigonometric or Fourier polynomials, Chebyshev poly-
nomials, Legendre polynomials, and many more. In the y-direction our system
of equations is non-periodic, so Fourier polynomials are not suitable as trial basis
functions along the y-direction. We will therefore use Chebyshev polynomials,
which have been widely used in many stability problems [62, 63] and turn out to
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be convenient for our current stability analysis of the Leidenfrost state.
The Chebyshev polynomials Tk(y) are defined as follows on the y = [−1,1]

domain [62]:
Tk(y) = cos

(
k cos−1 y

)
, k = 0,1,2 . . . (4.66)

A particular convenient choice for the collocation points y j in the case of Cheby-
shev polynamials is the Gauss-Lobatto choice, which fixes the trial functions at
the points:

y j = cos
(

π j
N

)
, j = 0, . . . ,N, (4.67)

and this transforms the basis functions into:

Tk(y j) = cos
(

π jk
N

)
, j = 0, . . . ,N, k = 0,1,2 . . . (4.68)

The Gauss-Lobatto points (4.67) are used to collocate the momentum and energy
equations plus the corresponding boundary conditions.

To collocate the continuity equation we use the so-called Gauss points:

y j = cos
(

π
(2 j +1)
2N +2

)
, j = 0, . . . ,N, (4.69)

which brings the corresponding basis functions into the following form:

Tk(y j) = cos
(

π(2 j +1)k
2N +2

)
, j = 0, . . . ,N, k = 0,1,2 . . . (4.70)

One may note that the Gauss points do not include the boundary points, whereas
the Gauss-Lobatto points do describe the boundaries. The reason for this is that we
do not want to collocate the density at the boundary, because we do not have ac-
tual boundary conditions for δ ñ. [Instead for δ ñ we have the integral constraint of
the particle conservation over the whole system, Eq. (4.47).] This is no problem,
since we can reduce the set of four hydrodynamic equations through elimination
of the number density δ ñ by making use of the continuity equation, which is of
first order, as already remarked in the context of Eq. (4.62). We then get a system
of three coupled equations for the velocity fields δ ũx and δ ũy, and the granular
temperature δ T̃ . Therefore we do not need a boundary condition for δ ñ [64], but
only boundary conditions (at the bottom and the top) for δ ũx, δ ũy, and δ T̃ , i.e.,
the conditions (4.48)-(4.53).
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The matrix problem defined by Eqs. (4.62)-(4.65) and the boundary conditions
of Eqs. (4.48)-(4.53) are then translated from the physical domain ỹ = [0,Hmax]
(with Hmax the truncated height of the system in particle diameters) to the y =
[−1,1] domain (on which the trial functions are defined) via the following trans-
formation:

y = lim
H→Hmax

2ỹ
H
−1. (4.71)

We have used a truncated physical domain up to y = Hmax where we have also
applied the boundary conditions. The value of Hmax ranges from 30 to 80 particle
diameters depending on the parameters. Using the grid formed by the Gauss and
Gauss-Lobatto points the linear stability analysis of the hydrodynamic model is
performed using the spectral-collocation method as described in detail in the book
by Canuto, Hussaini, Quarteroni, and Zang [62].

4.4.8 Solution

As an example of a state on which we have performed the stability analysis we
show in Fig. 4.5(a) the Leidenfrost state for F = 11 layers at a shaking strength

Figure 4.5: Theory: (a) The density profile ñ(ỹ) for the Leidenfrost state for F = 11
layers and shaking strength S = 200, used as a base state for the linear stability analysis.
(b) The growth rate γ as a function of the wave number kx for the Leidenfrost solution
depicted in (a). For all blue crosses γ < 0, meaning that the Leidenfrost state is stable.
The black dots indicate the unstable modes corresponding to γ > 0. The most unstable
mode, marked by the red square, defines the dominant wave number (kx,max = 0.095) and
hence the length of the convection cell: Λ = 2π/kx,max = 66 particle diameters.

80



4.4. THEORETICAL MODEL

Figure 4.6: Theory: The construction of the density profile of the convective state for
F = 11 and S = 200 by adding the perturbation (obtained from the linear stability analysis)
to the corresponding Leidenfrost state. From the stability analysis of Fig. 4.5 we know
that the cell length is Λ = 66 particle diameters; two cell lengths are depicted here. Dark
colors indicate regions of high density.
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S = 200. Since this base state is a numerical solution, the matrices A, B and C
necessary to solve Eq. (4.62) are generated numerically. The growth rate γ ob-
tained from the solution of Eq. (4.62), using the spectral-collocation method, is
depicted in Fig. 4.5(b). It shows an interval of kx-values for which γ is posi-
tive (i.e., the Leidenfrost state is unstable); The convection mode that will mani-
fest itself for this particular Leidenfrost state is associated with the wave number
kx,max = 0.095, for which the growth rate is maximal (marked by the red square).
Thus, hydrodynamic theory predicts a cell length (consisting of a pair of counter-
rotating convection rolls) of Λ = 2π/kx,max = 66 particle diameters.

From this dominant perturbation mode we can determine the density profile
of the corresponding convection pattern as illustrated by Fig. 4.6: It is the sum of
the Leidenfrost density profile and the perturbation profile.

This linear stability analysis has been performed on a large number of Lei-
denfrost states obtained from the hydrodynamic model, where we systematically
varied the number of layers F and the shaking strength S. This ultimately leads
to the phase diagram of Fig. 4.9 in which we compare hydrodynamic theory with
the experimental observations, as will be discussed in detail in the next Section.
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4.5 Comparing Experiment, Numerics, and Theory

We now have the results of the experiments, Molecular Dynamics simulations, and
theory, and in this Section we will check how they compare. We will start with the
convection threshold and then look into the three hydrodynamic continuum fields:
density, velocity, and temperature.

Figure 4.7: Experiment, MD simulation, and Theory: (a) Convection patterns for F = 6.2
particle layers in a container of length L/d = 101 at three consecutive shaking strengths:
S = 58, S = 130, and S = 202. (b) Snapshots of MD simulations for F = 6 layers in a
container of length L/d = 200 for S = 173, S = 561, and S = 839. (c,d) Two cell lengths
(2Λ/d) of the theoretical density and velocity profiles for F = 6 layers shaken at S = 60,
S = 130, and S = 200. The respective cell lengths are Λ/d = 57, 70, and 79.
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Figure 4.8: (a) Shaking strength S vs. wave number kx for F = 6 layers. The blue dots
correspond to the unstable modes kx as determined by the linear stability analysis of our
hydrodynamic model. The smallest S-value for which an unstable mode is found defines
the onset of convection: Sconv = 55. The red squares mark the most unstable mode at each
shaking strength and determines the theoretical length of a convective cell: Λ = 2π/kx,max.
(b) Experiment vs. Theory: Cell length Λ as a function of shaking strength S. The blue
dots indicate the experiments with F = 6.2 particle layers, where Λ is determined from
a plot such as depicted in Fig. 4.4(e). The dotted blue line is a linear fit through the
experimental data. The red crosses are theoretical data obtained from the instability region
depicted in (a), and the dashed red line is a linear fit through these theoretical points.

4.5.1 Cell length Λ vs. Shaking strength S

The comparison of experiment, MD simulation, and theory of Fig. 4.7 reveals that
if the shaking strength S is increased the convective cells expand and consequently
the number of convection rolls fitting the container becomes smaller. This depen-
dence is studied in more detail in Fig. 4.8 for the experiments and hydrodynamic
theory.

Figure 4.8(a) shows which Leidenfrost states for F = 6 layers are stable (cor-
responding to an eigenvalue γ < 0, white region), and which ones are unstable
(γ > 0, dotted region) and thus give way to convection. The region of instability
defines the critical shaking strength Sconv = 55 required for the onset of convec-
tion for this number of layers F . When the shaking strength is increased beyond
this critical value, the instability region is seen to widen and at the same time the
dominant wave number kx,max [marked by the red squares in Fig. 4.8(a)] becomes
smaller. This means that the cell length Λ = 2π/kx,max increases with S.

Comparing with experiment, Fig. 4.8(b), we see that the theoretically pre-
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dicted cell length (Λ = 2π/kx,max) consistently overestimates the experimentally
observed cell lengths. Both show a linear dependence though, and the theoretical
prediction becomes better for stronger fluidization.

The comparison of experiment and theory culminates in the (S,F)-phase di-
agram of Fig. 4.9 showing the onset of convection for various number of lay-
ers [65]. Experiment and theory are seen to be in excellent agreement. The only
fit parameter we have used is the Prandtl number of Eq. (4.12), the value of which
we have fixed to Pr = 1.7.

Figure 4.9: Experiment and Theory: The convection threshold in (S,F)-phase diagram.
The experiments are performed with d = 1 mm glass beads, with shaking amplitude a =
2.0 mm (blue dots), a = 3.0 mm (red squares), and a = 4.0 mm (black crosses). The
shaking strength S is varied via the frequency f . The theoretical data points (indicated
by magenta triangles) depend sensitively on the expression used for the viscosity: Here
we have taken µ̃(ñ, T̃ ) = Pr κ̃(ñ, T̃ ) with the dimensionless Prandtl number Pr = 1.7. The
magenta line is a fit through these theoretical points.
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4.5.2 Density profile
In Fig. 4.10 we compare the density profiles for experiment, MD simulation, and
theory. The experimental density profile [Fig. 4.10(a)] is determined by averaging
over 250 high-speed snapshots. Because the density is estimated from the projec-
tion of our quasi 2-D system, the density is slightly overestimated. The simulation
profile [Fig. 4.10(b)] is based on a single snapshot, averaged over the depth of the
container.

The density profiles of Fig. 4.10 are seen to agree closely. The only mismatch
is the shaking strength S of the MD simulation compared to the experimental
and theoretical value. This is probably due to the relatively high roll friction
the colliding particles experience, thereby making the total dissipation artificially
large, as explained in Section 4.3.

In Fig. 4.7 we have shown how the experiments, simulations, and theory de-
pend on the shaking strength S. The increasing cell length Λ for stronger flu-
idization has already been treated in the previous subsection. Besides, the cells
also expand in height, which is an indication of the approaching transition from
convection rolls to a granular gas.

In the theoretical density and velocity profiles, Fig. 4.7(c,d), we have plotted
two cell lengths Λ, determined by the value of kx,max of the dominant perturba-
tion mode. If we translate these cell lengths to the experimental and numerical
container length of L/d = 101, theory predicts that the container should contain
k = 2, 2, and 1 convective cells respectively (against k = 3, 2, 1 in experiment and
MD simulations). So, the linear stability analysis of the hydrodynamic model is
in reasonable quantitative agreement with the experiments and MD simulations.
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Figure 4.10: Comparing Experiment, MD simulation, and Theory: (a) The density pro-
file (averaged over 250 high-speed snapshots) of F = 6.2 layers of steel beads in a con-
tainer of length L/d = 164, shaken at a = 4.0 mm and f = 52 Hz (S = 174). This experi-
mental profile shows 2 convective cells, where the color coding indicates the regions with
high density (black) and low density (white). (b) Averaged density profile of a MD simu-
lation showing three convective cells for F = 6 layers in a container of length L/d = 200,
with shaking amplitude a = 4.0 mm and frequency f = 83 Hz (S = 444). (c) The theore-
tical density profile for F = 6 and S = 170 plotted for two cell lengths: 2Λ/d = 158.
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4.5.3 Velocity profile

The velocity field cannot be extracted in a straightforward way from the exper-
iment, because the particles overlap in the high-speed pictures of the quasi 2-D
setup. We therefore compare only the MD simulations with hydrodynamic theory,
see Fig. 4.11. Disregarding the mismatch of the shaking strength S, as discussed
in Section 4.3, the velocity fields are very similar and display nearly the same cell
length Λ. A particularly fine point of correspondence is that both in simulation
and in theory the rolls are tilted a bit.

Figure 4.11: MD simulation vs. Theory: (a) Velocity profile based on a snapshot from
a MD simulation with F = 6 layers in a container of length L/d = 200, shaken with an
amplitude a = 4.0 mm and frequency f = 83 Hz (S = 444). (b) The theoretical velocity
profile plotted for two cell lengths (2Λ/d = 158) for F = 6 layers and shaking strength
S = 170.
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4.5.4 Temperature profile

The granular temperature profile can be determined from the velocity field and
because this data is only available for the MD simulations and hydrodynamic
theory we compare these two in Fig. 4.12.

The theoretical temperature profile of Fig. 4.12(b) is determined in a similar
manner as the theoretical density profile [Fig. 4.6]: The perturbed temperature
profile determined from the linear stability analysis is added to the temperature
profile of the Leidenfrost state. The small scale structures present in the numerical
convective cells [Fig. 4.12(a)] are due to the fact that this plot is based on one

Figure 4.12: MD simulation vs. Theory: (a) Temperature profile based on a snapshot
from a MD simulation with F = 6 layers in a container of length L/d = 200, shaken at
a = 4.0 mm and f = 83 Hz (S = 444). (b) Two cell lengths (2Λ/d = 158) of the theoretical
temperature profile with F = 6 layers and shaking strength S = 170.
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single snapshot and the white region near the bottom is simply due to the fact that
this layer is evacuated by the vibrating bottom. Apart from these two features,
hydrodynamic theory and MD simulations match well.

4.6 Conclusion
We have studied buoyancy driven convection in vertically shaken granular mat-
ter, exploiting experiment, numerics, and hydrodynamic theory. At strong shak-
ing strength counter-rotating convection rolls are formed and this phenomenon is
found to be analogous to Rayleigh-Bénard convection for ordinary fluids with a
free surface. Special features in our case are that the convection originates not
from a homogeneous fluid, but from the inhomogeneous Leidenfrost state (with a
dense cluster floating on a gaseous region) and the specific granular properties of
the system expressed by the constitutive relations.

In analogy with the theory of Rayleigh-Bénard convection in ordinary flu-
ids [57] we have performed a linear stability analysis of the hydrodynamic model
for this Leidenfrost state [42]. The results of this continuum description are found
to be in good overall agreement with the experimental observations, and in partic-
ular the threshold in the (S,F)-phase diagram for the onset of convection (Fig. 4.9)
shows a perfect match between experiment and theory. This is a great success for
granular hydrodynamics and stresses its applicability to collective phenomena in
strongly shaken granular matter.
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4.7 Appendix A
There is quite some discussion on the shear viscosity µ in granular systems and
consequently various expressions have been proposed in the literature. Brey et
al. [60] give the following relation for two dimensions and for a dilute granular
gas:

µ(T ) =
1

2d

√
mT
π

µ∗(e), (4.72)

where µ∗(e) is a function of the restitution coefficient e.
Ohtsuki and Ohsawa [35] deduce an expression for µ including a dependence

on the density n to account for excluded volume effects:

µ(n,T ) =
{

1
4

n2d3 +
1

2πd

(
1+

π
4

nd2
)2

}√
πmT . (4.73)

He et al. [31] propose that the shear viscosity should be equal to the thermal
conductivity κ:

µ(n,T ) = κ(n,T ), (4.74)

i.e., they took the dimensionless Prandtl number to be Pr = µ/κ = 1. In the
present paper we have found good correspondence between experiment and theory
using a more general form:

µ(n,T ) = mPrκ(n,T ), (4.75)

where Pr is the dimensionless Prandtl number. We used it as a fit parameter for
the phase diagram of Fig. 4.9 and found that Pr = 1.7 gave excellent agreement.

Figure 4.13 shows the influence of µ on the resulting growth rate γ(kx), com-
paring the results obtained if one uses the expression by Brey et al. [Eq. (4.72)]
with those obtained for expression Eq. (4.75). It is seen that the viscosity defini-
tion of Eq. (4.75) has a stabilizing effect on the Leidenfrost state with increasing
number of particle layers F , in agreement with the experimental observations,
whereas Eq. (4.72) has a destabilizing effect. We show in the (S,F)-phase dia-
gram of Fig. 4.9 that Eq. (4.75) yields qualitative and quantitative agreement with
the experimental results.
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Figure 4.13: Theory: Influence of the choice for the shear viscosity µ on the growth
rate γ(kx) for two Leidenfrost states at the same shaking strength S = 200: (a) For F = 6
layers the region of instability of the Leidenfrost state is significantly reduced by going
from the expression for µ(T ) by Brey et al. [Eq. (4.72), blue dots] to µ(n,T ) as defined
by Eq. (4.75) with Pr = 1.7 [red crosses]. (b) For F = 11 layers the stabilizing effect is
even stronger. Note that the range of unstable kx-values for the blue dots has increased
compared to the F = 6 Leidenfrost state, whereas the opposite is true for red crosses.
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4.8 Appendix B
For the matrix problem of Eq. (4.62) we need to specify the elements of the ma-
trices A, B, and C of Eqs. (4.63)-(4.65), which contain p, I, and the transport
coefficients and their derivatives. These are given below:
First of all, we have the equation of state for the pressure p̃ and its derivatives:

p̃L = ñLT̃L
1+ ñL

1− ñL
, (4.76)
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∂ ñ
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(4.80)

The expressions for the energy dissipation rate Ĩ read as follows:

Ĩ =
ε
γ
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˜̀ , (4.81)
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∂ T̃

∣∣∣
L

=
3ε
2γ

ñ
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The mean free path ˜̀and its derivatives are given by:
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32
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∂ ñ2 = 2

√
3

32

(
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We continue with the transport coefficient for the thermal conductivity κ̃ and its
derivatives:

κ̃L =

(
α ˜̀+1

)2

˜̀ ñ
√

T̃ , (4.87)
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Finally, we have the constitutive relation for the shear viscosity µ̃ , which is related
to κ via the Prandtl number Pr:

µ̃L = Pr κ̃L, (4.97)
∂ µ̃L

∂ ỹ
= Pr

∂ κ̃L

∂ ỹ
, (4.98)
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and the second viscosity λ̃ :

λ̃L = −2
3

Pr κ̃L, (4.99)

∂ λ̃L

∂ ỹ
= −2

3
Pr

∂ κ̃L

∂ ỹ
. (4.100)
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CHAPTER 5. GRANULAR HYDRODYNAMICS AT ITS EDGE

The one-dimensional granular system introduced by Du, Li, and Ka-
danoff [Phys. Rev. Lett. 74, 1268 (1995)] is shown to mark the exact
edge of granular hydrodynamics. The density profile of the charac-
teristic steady state, in which a single particle commutes between the
driving wall and a dense cluster, is well captured by a hydrodynamic
description provided that the finite size of the particles is incorpo-
rated. The temperature, however, is not well-described: Since all
energy exchange is located at the border of the cluster, it is precisely
for this quantity that the continuum approach breaks down.

(See also the two flip books printed on the bottom of every page, for more details
see the beginning of this thesis.)

5.1 Introduction
One of the central themes in the field of granular matter today is the question
to what extent the rich variety of experimental phenomena can be captured by
hydrodynamic continuum theory. Such a theory can hardly be expected to cover
all observed effects [1], the main obstacle being the lack of separation of scales:
The size of the granular particles is not negligible compared to the system size.
This is a serious limitation to any continuum theory, especially for the small-scale
phenomena. For large-scale collective effects, however, hydrodynamic modelling
is a natural approach [2, 3] and has been successfully applied to a large number
of phenomena ranging from cluster formation in various granular gases [4–6] to
convection rolls in a vibrated granular bed [7], the fluid-like impact of a steel ball
on sand [8], and the granular Leidenfrost effect [9], see Ch. 3 of this thesis.

A very illustrative example in this context was introduced in 1995 by Du, Li,
and Kadanoff [10]. It consists of N inelastically colliding particles confined to a
horizontal tube [Fig. 5.1(a)] driven at the left wall: A random velocity is given to
the leftmost particle every time it hits this wall. The right wall is insulating, i.e.,
the collisions of the rightmost particle with this wall are fully elastic.

Starting out from a homogeneous distribution, the particles are seen to clus-
ter at the right wall [Fig. 5.1(b)]. All particles get caught in the cluster, except
the leftmost particle, which keeps travelling back and forth between the hot wall
and the cluster [10, 11]. Clearly, there is no equipartition of energy: A dilute
region consisting of one fast particle coexists with a dense region of slow par-
ticles. A typical time-averaged density and temperature distribution are shown
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Figure 5.1: (a) Initial condition of a Molecular Dynamics (MD) simulation with N = 20
identical particles, diameter d, randomly distributed over the tube length L. Every time
the leftmost particle hits the left wall it is given a random velocity. The collisions of
the rightmost particle with the right wall are elastic. (b) After many inelastic collisions:
A cluster of slow particles is kept close to the right wall by one relatively fast particle
commuting between the hot wall and the cluster. (c) Time-averaged number density ñ(x̃)
of the steady state and (d) the corresponding granular temperature T̃ (x̃) for L = 1000d.
(The tilde above x̃, ñ and T̃ indicates that these are dimensionless quantities that will be
introduced in Sec. 5.3.)

in Fig. 5.1(c) and 5.1(d). Du et al. [10] demonstrated that the “simplest hydro-
dynamic approach”, treating the system as an ideal gas of sizeless particles with
energy dissipation (from the particle collisions), fails to correctly describe this
state.

What is the reason for this failure? As it turns out, the crucial point is that the
individual left particle has no way of establishing a continuous energy exchange
along its path. It therefore does not form a gas in the hydrodynamic sense, but
rather a Knudsen gas, which is so dilute that the particle collisions within the gas
can be ignored in comparison with the collisions with the boundaries.

We will show that hydrodynamics is able to capture the density throughout
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Figure 5.2: (a) Position of the cluster’s center of mass, x̃CM(t) = xCM/d, as a function
of time (normalized by t0 = L

√
m/T0) for a MD simulation with N = 20 particles and a

restitution coefficient e = 0.99. The cluster occasionally expands and re-compacts; the
expansions occur when the left particle picks up a particularly small velocity from the hot
wall. The dotted line (see also inset) marks the maximal value of xCM = L−d(N−1)/2
corresponding to a close-packed cluster in a tube of length L = 1000d. (b) For a higher
restitution coefficient, e = 0.9999, xCM stays much closer to this maximal value. (c)
The running average of the cluster’s center of mass position, sampled every 100 time
units, for a series of MD simulations with N = 20 particles starting out from the same
initial conditions. The curves correspond to various restitution coefficients, showing the
transient time the system needs to reach the steady state in which the commuting particle
keeps the cluster of particles at the right wall.
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the system (if the excluded volume is properly accounted for), but not the energy
profile. Therefore this one-dimensional system indicates the exact point where
the continuum theory breaks down and, moreover, the reason why. This greatly
enhances the significance of this system: It is not just an example in which hydro-
dynamics fails, but it actually marks the precise edge of granular hydrodynamics.

The individual behavior of the leftmost particle does not only cause the break-
down of hydrodynamics in this region, but also triggers an interesting phenomenon
[Fig. 5.2(a)]: Once in a while this particle gets a particularly small velocity from
the hot wall, giving the cluster time to expand. The extent of the expansion is
controlled by the restitution coefficient e, see Fig. 5.2(b). Approaching the elastic
limit (e→ 1) means that the time needed to get a converged simulation increases
rapidly as shown by Fig. 5.2(c). In fact, in the limit e = 1 the system never de-
velops a cluster and x̃CM keeps fluctuating around its mean value 500 (= L/2)
forever.

When the steady state is eventually reached for e < 1, the cluster consists of
particles moving only slowly. For increasing restitution coefficient the particles in
the cluster become slower, causing the amplitude of the occasional expansions to
decrease [see Fig. 5.2(b)].

After each expansion, it takes a large number of collisions to force the clus-
ter back to its ordinary size and density again. This intermittent expansion of the
cluster has been treated in detail in Refs. [10, 12]; in our time-averaged contin-
uum description it only shows up as a slight smoothening of the density profile
around the boundary between the dilute region and the cluster, as demonstrated
in Fig. 5.3(c). This boundary region for the theoretical density profiles becomes
wider when e→ 1, whereas for the MD simulations of Fig. 5.3(a,b) the boundary
region becomes narrower. This behavior of the MD simulations can be under-
stood as follows: The inelasticity causes the velocity distribution of the cluster
particles to show some spread, which decreases when the system becomes more
elastic [13]. This dispersion in the particle velocities accounts for the smaller am-
plitude of the occasional expansions mentioned above and thereby also for the fact
that the transition region becomes smaller in the MD simulations as e→ 1. In the
elastic limit (e = 1) the profiles for the density and temperature are uniform both
in MD and in the hydrodynamic model. For the MD simulations this means that
the limit e → 1 shows a distinct discontinuity. By contrast, in the hydrodynamic
model the behavior for this limit is a gradual one; the effect of dispersion in parti-
cle velocities (which causes the discontinuity in the MD limit) is not described by
the model.
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Figure 5.3: MD vs. Hydrodynamics in the near elastic limit for N = 187 particles in a
tube of length L = 1000d: (a,b) The time-averaged dimensionless number density ñ(x̃)
and granular temperature T̃ (x̃) obtained from MD simulations (in the steady state) for
three different values of restitution coefficient e. The total duration of the simulations was
t/t0 = 5 ·107 and we sampled every 100 time units. (c,d) The density ñ(x̃) and temperature
T̃ (x̃) from hydrodynamic theory (see Sec. 5.3).

5.2 Molecular Dynamics simulations

We use an event-driven Molecular Dynamics (MD) code, in which N identical
particles of diameter d and unit mass m collide inelastically [14]. The velocities
after each collision are related to those before the collision (see Fig. 5.4) by the
following two rules:

v′1 =
1
2

[v1(1− e)+ v2(1+ e)] (5.1)

v′2 =
1
2

[v1(1+ e)+ v2(1− e)] (5.2)
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Figure 5.4: Inelastic collision of two identical particles. The initial and final veloci-
ties are indicated: Their sum is constant (v1 + v2 = v′1 + v′2), expressing momentum con-
servation, whereas the difference becomes smaller and defines the restitution coefficient
e =−(v′2− v′1)/(v2− v1) = 0.9.

They are derived from the conservation of momentum (v′1 +v′2 = v1 +v2) together
with the definition of e, the coefficient of restitution: v′1− v′2 = −e(v1− v2). If
e = 1 the collisions are fully elastic, but we will consider only the inelastic case
e < 1, in which the particles lose a fraction ε = (1− e2) of their kinetic energy in
every collision. In order to avoid inelastic collapse (an infinite number of colli-
sions in a finite time [10, 15]) we choose Nε < 1.

The left wall is hot: It drives the leftmost particle by giving it a random ve-
locity from a linearly corrected Gaussian distribution v0 exp(−v2

0/2T0) [16]. The
linear pre-factor v0 corrects for the fact that a very small velocity lives longer in
the system than a fast one (and thus has a larger influence on the time average); it
ensures that the ensemble of all N particles acquires a time-averaged velocity dis-
tribution that is purely Gaussian in the elastic case (e = 1). In order to minimize
the transient time before this distribution establishes itself, we initially put the
particles at random positions in the tube and give each of them a random velocity
picked from the same distribution as we use at the hot wall.

The value of T0 (the granular temperature of the hot wall) gives the width of
the velocity distribution offered to the leftmost particle, i.e., the strength of the
driving. The temperature is defined by 1

2kBT = 1
2m(〈v2〉− 〈v〉2) with kB = 1 (the

standard choice for granular systems, giving T the dimensions of energy) and unit
mass m.

The right wall is insulating: The collisions of the rightmost particle with this
wall are perfectly elastic, so no energy is dissipated here.

Figure 5.1 shows the result of a typical MD simulation with N = 20 particles.
Steady state profiles for higher values of N are depicted in Fig. 5.3 and 5.5. The
density and the temperature profiles immediately reveal the inelastic nature of the
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collisions. In the elastic case (e = 1) both would simply be constant throughout
the tube as mentioned above.

The qualitative features of the system are not too sensitive to the precise values
of the control parameters N and the inelasticity ε , provided that N ≥ 2, ε > 0, and
Nε < 1. Even for N = 2, the steady state is found to consist of one commuting
particle and one particle that remains close to the right wall [12]. With respect
to the third control parameter T0 (the driving strength), one may anticipate that
above some critical value T0,crit (depending on N and ε) the dissipation due to the
collisions in the system will be overpowered and the cluster is fluidized [17]. Here
we do not consider such high T0-values; our system always shows a coexistence
of 1 travelling particle and N−1 cluster particles.

5.3 Hydrodynamics of the steady state
We consider the steady state of the system. This means that the full hydrodynamic
problem [which would involve a number density n(x, t), velocity field u(x, t), and
granular temperature T (x, t)] here reduces to finding the two time-independent
quantities n = n(x) and T = T (x), while u ≡ 0. To achieve this, we use three
hydrodynamics equations plus boundary conditions.

We go beyond the ideal-gas description by incorporating the finite size of the
particles (via the constitutive relations [18]) and also the dissipation due to the col-
lisions. This is in the same spirit as we did for the granular Leidenfrost effect [9],
see Ch. 3, an analogous clustering phenomenon in a 2D vertical system.

The first hydrodynamic equation is the momentum balance [19]:

d p
dx

= 0, (5.3)

where p is the pressure. It immediately follows that p is constant throughout the
tube. Its value is determined by the second equation in our model, the equation of
state:

p =
nT

1−nd
=

nT
1−n/nc

. (5.4)

Here nc is the maximal number density (i.e., the number of particles per unit
length in the close-packed case, nc = 1/d). In Eq. (5.4) one recognizes the ideal
gas law p = NT/L = nT with a VanderWaals correction for the excluded length
due to the finite size of the particles, i.e., the free space within the tube is not L
but L−Nd. This 1D equation of state [20] is slightly different from the one we
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used for the granular Leidenfrost effect, which was especially designed for a 2D
system [9, 21]. It also differs from the ideal gas law used as the equation of state
by Du et al. [10], since they used sizeless particles.

The third hydrodynamic equation is the energy balance, expressing the steady
state equilibrium between the heat flux through the array of particles and the dis-
sipation due to the inelastic collisions:

− dΦ(x)
dx

= I(x). (5.5)

Here Φ(x) =−κ(x)dT/dx is the heat flux (from high to low temperatures, hence
the minus sign), with κ(x) the thermal conductivity allowing for finite size effects:

κ(x) = C1
T 1/2(x)
n(x)`(x)

= C1
T 1/2(x)

1−n(x)/nc
. (5.6)

Here C1 is a constant and `(x) denotes the local mean free path, which is re-
lated to the number density as n(x) = 1/[d + `(x)], or equivalently `(n(x)) = [1−
n(x)/nc]/n(x). The dimensionless mean free path `(x)/d = [1−n(x)/nc]/[n(x)/nc],
called the Knudsen number, is very large in the dilute region and vanishingly small
within the cluster. Note that Du et al. used κ(x) ∝ T 1/2(x) for the thermal con-
ductivity [10].

In Eq. (5.5) the dissipation rate I (per unit length and per unit time) is given
by:

I(x) = C2ε
n(x)
`(x)

T 3/2(x) = C2ε
n2(x)T 3/2(x)
1−n(x)/nc

, (5.7)

with C2 a constant. The expression for I is equal to the energy loss in one colli-
sion (∝ εT ) multiplied by the total number of collisions per unit time taking into
account excluded volume (∝ n

√
T/`) [21]. Du et al. used the low density limit of

Eq. (5.7) for the dissipation rate, i.e., I(x) ∝ εn2(x)T 3/2(x) [10].
The set of three hydrodynamic equations (5.3)-(5.5) is complemented by three

boundary conditions: (i) The imposed granular temperature at the hot wall T (0) =
T0, (ii) vanishing heat flux at the insulating wall Φ(L) = 0, and (iii) conservation
of particles

∫ L
0 n(x)dx = N.

Now let us introduce dimensionless variables:

ñ =
n
nc

, T̃ =
T
T0

, x̃ =
x
d
. (5.8)
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The force balance (5.3) and the equation of state (5.4), combined into one, then
read:

p̃ =
ñT̃

1− ñ
= constant = p̃0, (5.9)

the energy balance (5.5) becomes (with C = C2/C1):

− dΦ̃
dx̃

= Cε
ñ2T̃ 3/2

1− ñ
, where Φ̃ =

−T̃ 1/2

(1− ñ)
dT̃
dx̃

, (5.10)

and the dimensionless boundary conditions are:

T̃ (0) = 1, Φ̃(L/d) = 0,

∫ L/d

0
ñdx̃ = N. (5.11)

One thus arrives at a problem consisting of two first-order differential equations
[see Eq. (5.10)] and three unknown quantities ñ, T̃ and Φ̃. We use Eq. (5.9) to
express ñ in terms of T̃ [22]:

ñ(T̃ ) =
1

1− T̃ (x̃)[1−1/ñ(0)]
, (5.12)

and with this the two differential equations to be solved take the form:

dT̃
dx̃

= − [1− ñ(T̃ )] Φ̃
T̃ 1/2

, (5.13)

dΦ̃
dx̃

= −C ε
ñ2(T̃ ) T̃ 3/2

1− ñ(T̃ )
, (5.14)

supplemented by the boundary conditions T̃ (0) = 1 and Φ̃(L/d) = 0 [23]. We
solve this numerically, varying the shooting parameter Φ̃(0) to fulfill the second
boundary condition.

In the process of solving Eqs. (5.13)-(5.14) we find that the heat flux Φ̃(x̃)
vanishes already before the right wall. Let us call this point x̃ = x̃1. The tem-
perature T̃ (x̃) becomes zero here, and [via Eq. (5.12)] the density ñ(x̃) becomes
1, giving a singularity in the equations (5.13)-(5.14). As a result, the heat flux
Φ̃(x̃) gets negative beyond x̃1, as if energy would flow from the cold right side
into the system. For our time-averaged quantities this makes no physical sense.
So beyond x̃1 we fix the heat flux to Φ̃(x̃) = 0, and hence also the values T̃ (x̃) = 0
and ñ(x̃) = 1, which means that the interval between x̃1 and the right wall is an
immobile, close-packed cluster.
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Figure 5.5: Density ñ(x̃) and temperature T̃ (x̃) along a tube of length L = 1000d for
various numbers of particles: (a,b) N = 187 and (c,d) N = 567. The restitution coefficient
is fixed at e = 0.9999. Dashed red curves represent our MD simulations (total duration was
t/t0 = 5 ·107 with sampling every 100 time units), and solid blue lines the hydrodynamic
model (5.13)-(5.14).

Apart from the heat flux itself, also its derivative dΦ̃/dx̃ is zero at x̃1, which
means that the transition from the dilute region to the cluster occurs smoothly.

The resulting density and temperature profiles are shown in Fig. 5.3 and 5.5.
The agreement with the corresponding MD simulations [exploiting the only fit
parameter in our theory, namely the constant C in Eq. (5.14)] is seen to be good
regarding the density ñ. However, the temperature T̃ is not reproduced well in
the dilute region. The model predicts a linear decrease of T̃ , whereas the actual
temperature is constant: This is a consequence of the fact that this region contains
just one particle, which has no way of exchanging energy with other particles
until it meets the cluster at x̃1. It has a constant velocity (and hence T̃ ) along its
whole path.

The fact that the energy exchange takes place only at the boundary between the
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dilute region and the cluster is illustrated by Fig. 5.6, where we plot the thermal
conductivity obtained from the hydrodynamic model:

κ̃(x̃) =
T̃ 1/2(x̃)
1− ñ(T̃ )

= T̃ 1/2(x̃)+
ñ(0)

1− ñ(0)
T̃−1/2(x̃) (5.15)

versus the mean energy exchange between the particles, Eexch(x̃), determined
from the MD simulation. The thermal conductivity shows a pronounced upswing
at the boundary x̃1. It is also non-zero to the left of this boundary (∝ T̃ 1/2, i.e.,
the ideal-gas behavior for ñ¿ 1), but this should now be recognized as an artefact
of the continuum description: The dilute region is treated as a hydrodynamic gas,
which - even at low density - is by definition supposed to consist of an ensemble of
particles with energy exchange. The actual κ̃ consists of the upswing only. That
is, we are dealing with a Knudsen gas, i.e., a gas in which only the collisions with
the boundaries count. This is confirmed by Eexch(x̃) in the simulations, which in
the dilute region shows no energy exchange at all, and a pronounced maximum
at the boundary of the cluster x̃1. The density inside the cluster steadily grows,
see Fig. 5.5(a), and as a result the number of collisions increases in the cluster.

Figure 5.6: Energy transport through the system: Hydrodynamics vs. MD. The energy
transport according to the hydrodynamic model is represented by the thermal conductivity
κ̃(x̃) [solid blue line]; it is calculated via Eq. (5.15) from the hydrodynamic temperature
profile for N = 187 particles of Fig. 5.5(a,b). The energy transport for the MD simulations
is reflected by Eexch(x̃) [dotted black line]. The (mean) energy exchange Eexch(x̃) is deter-
mined by keeping track of the energy gain or loss of the right particle for every colliding
pair of particles within a region of size d around the position x̃.
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However, the energy involved in every collision drops drastically here and causes
the energy exchange to decay linearly [13]. At the right wall the energy exchange
vanishes, since the collisions of the rightmost particle with the wall are elastic.The
hydrodynamic model does not predict the gradual growth of the density in the
cluster, so κ̃(x̃) does not decrease but stays constant all the way up to the right
wall.

5.4 Localized-energy-exchange model
Treating the κ̃ as a step function, the temperature drops from 1 to zero in one step
at x̃1:

T̃ (x̃) =
{

1 for 0 < x̃ < x̃1 ,
0 for x̃1 < x < L

d .
(5.16)

Here the value of x̃1 is determined from the fact that the cluster contains N− 1
immobile particles, closely packed against the right wall: x̃1 = L

d − (N− 1). The
corresponding number density is:

ñ(x̃) =

{ [L
d − (N−1)

]−1 for 0 < x̃ < x̃1 ,
1 for x̃1 < x < L

d .
(5.17)

It jumps from a small value, representing the commuting particle in the left part
of the tube [length L

d − (N−1)], at once to the close-packed value 1.

Figure 5.7: The localized-energy-exchange model of Eqs. (5.16)-(5.17) [solid black
lines] vs. MD simulations [dashed red lines] for N = 567 particles. Both the density
ñ(x̃) and the temperature T̃ (x̃) show good agreement.
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In this hybrid model, in which hydrodynamics is blended with the individual
behavior of the leftmost particle, the force balance d p̃/dx̃ = 0 still holds through-
out the system (so the pressure is constant). Also the equation of state Eq. (5.9)
has not been altered (in the dilute part it determines the constant value of p̃, while
in the solid part it gives an indeterminate result). The only adjustment has taken
place in the energy balance (5.10): The exchange of energy, which in the pure
hydrodynamic model was supposed to occur along the whole length of the tube,
has been condensed to x̃1.

The density and temperature according to the localized model are compared
with the MD results in Fig. 5.7. Not only the density profiles match well, as in
the case of the purely hydrodynamic model, but also the temperature T̃ (x̃) shows
good agreement.

5.5 Conclusion

So we have answered the question to what extent hydrodynamics works in this
granular system: It successfully captures the density, with its sharp division in a
dilute and a clustered region, but not the temperature. This can be traced back to
the basic assumption of the continuum approach, that the dilute region - even when
the density gets very low - is supposed to consist of a sufficiently large number
of particles to justify its treatment as a continuous medium. In the present system
this assumption is incorrect, since the dilute region contains only one particle. It is
at the level of the energy exchange that the discrepancy really makes a difference:
Where the continuum view would have an energy exchange throughout the dilute
region (and a corresponding decrease in the granular temperature), the energy of
the commuting particle remains in fact constant until it meets the cluster [24].

We introduced a localized-energy-exchange model which keeps the good
points of the hydrodynamic description (the force balance, and the equation of
state incorporating excluded volume effects) mixed with the one-particle feature
that all energy exchange takes place at the cluster boundary. This model gives an
accurate description of both the density and the temperature.

Thus, the horizontal array of inelastic particles proves to be a prime example
of granular hydrodynamics at its edge. Du et al. [10] introduced it as a system
for which hydrodynamics simply breaks down, but there is more to it than that: It
identifies the exact point at which the continuum description starts to fail and, on
top of this, the reason why.
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6
Granular Realization of the

Smoluchowski-Feynman Ratchet
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(2007).
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We construct a working Smoluchowski-Feynman ratchet consisting of
four vanes that are allowed to rotate freely in a vibrofluidized granu-
lar gas. The two sides of the vanes are coated differently to induce a
preferential direction of rotation, i.e., the ratchet effect. Above a criti-
cal shaking strength, the probability distribution function of the angu-
lar velocity develops a double maximum, due to the positive feedback
the vanes get from the convective rotation they induce in the granular
gas.

6.1 Introduction
The importance of Brownian motors, which extract useful work from a noisy en-
vironment, can hardly be overstated. Examples are ubiquitous, ranging from the
motor proteins in our bodies to self-winding wristwatches. And with nanotech-
nology strongly developing, there is a growing demand for tiny devices that are
able to convert stochastic energy (heat for instance) into directed motion [1, 2]. To
circumvent the second law of thermodynamics, which states that no work can be
extracted from a system in thermodynamic equilibrium, these motors must operate
under non-equilibrium conditions.

In order to get directed motion (i.e., a ratchet effect), some kind of symmetry
breaking is necessary, either spatially or temporally. Usually this is accomplished
by an asymmetry in the geometry of the motor. An especially appealing Brownian
motor was thought of in 1912 by Smoluchowski [3] and made famous in the Feyn-
man lectures [4]. It consists of four vanes (reminiscent of a windmill) and a pawl
(an asymmetric toothed wheel), as shown in Fig. 6.1(a). The device is submerged
in a heat bath.

If the bath is in thermodynamic equilibrium there is no ratchet effect: Al-
though at first glance it seems that the wheel can turn in only one direction (and
might lift the attached weight), Smoluchowski and Feynman showed that this is
actually not the case, since both the vanes and the pawl are subject to collisions
with the gas molecules. This makes the pawl bounce off the toothed wheel, thus
enabling the device to rotate randomly in either direction. Indeed, if it were pos-
sible to lift the weight under equilibrium conditions, the engine would violate the
second law of thermodynamics.

If the gas is out of thermal equilibrium, however, the Smoluchowski-Feynman
ratchet may work. This has partly been realized by various chemical motors on a
molecular scale [5–12]. We now present a continuously rotating Smoluchowski-

118



6.1. INTRODUCTION

Figure 6.1: (a) The Gedankenexperiment of Smoluchowski [3] as envisaged by Feyn-
man [4]. (b) Our granular version of the Smoluchowski-Feynman ratchet. The vanes are
able to rotate in both directions when hit by the granular particles, and their angle θ(t) is
recorded by the rotation sensor. The height h (between the null-position of the vibrating
bottom and the vanes) can be varied. (c) The actual setup.
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Feynman ratchet, using a granular gas as a heat bath. This type of gas is out-
of-equilibrium: To keep it in motion, it needs a constant energy input, which is
constantly dissipated by the inelastically colliding particles.

Our setup is shown in Fig. 6.1(b) and 6.1(c). The four vanes (25×60 mm each)
are made from stainless steel and they are constructed out of one piece to make the
construction optimally balanced. The axis of the vanes is attached to the container
wall by a low-friction ball bearing. The angle θ(t) is measured (at a frequency of
1000 Hz) by an optical angle encoder, with an accuracy of 1.9 ·10−4 rad. Thanks
to the very small moment of inertia of this sensor (I = 7.2 · 10−5 kgm2), single
collisions of the particles with the vanes can easily be detected. The granular
particles in our setup are glass beads of diameter d = 4.0 mm (ρ = 2600 kg/m3).
They are brought into a gas-like state by the vibrating bottom, which is mounted
on a shaker with tuneable frequency f and amplitude a. The container is not
connected to this bottom: It is a stationary plexiglass cage (140×140×400 mm)
with a meshed top in order to keep the particles inside and the air pressure within
the setup constant.

The system is carefully balanced via a series of test experiments. The bal-
ancing is an essential feature of the setup, since any unbalance would induce an
unintended directed motion and obscure the ratchet effect.

The natural dimensionless control parameters for this system are: (i) The num-
ber of particles N, which we vary from 500 to 2000; (ii) The dimensionless height
h/d of the vanes above the vibrating bottom (in our experiments we choose either
h = 51 mm or h = 75 mm, i.e., h/d = 12.75 or 18.75); (iii) The shaking strength
parameter,

S =
4π2(a f )2

gh
, (6.1)

which is the ratio of the typical kinetic energy given to the particles by the vi-
brating bottom and their potential energy at the height of the vanes (this is the
parameter which we will vary systematically); and (iv) the coefficient of normal
restitution e of the particle-particle collisions (we do not vary this last parameter,
using glass spheres with e≈ 0.95 throughout).

6.2 Symmetrically coated vanes

We first study the symmetric (non-ratchet) version of the system, in which the two
sides of each vane are identical. In each experiment we start out from the same
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configuration with the vanes forming an upright cross (+). Figure 6.2 shows the
results at four different values of the shaking strength S:

(a) At mild shaking, the bulk of the granular gas remains close to the bottom
and only rarely does a particle jump high enough to hit the vanes. The first one will
unbalance the + configuration and move the vanes towards an × position, which
is stabilized through the following mechanism: The particles coming from the
vibrating bottom mainly have a velocity in the vertical direction and when hitting
the vanes in an × position they are reflected towards the neighboring lower vane;
the collision with this vane redirects them back to the vibrating bottom. These
two collisions have an opposite effect on the rotation of the vanes and overall they
add up to only a negligible net rotation. This stabilizing effect is absent for the +
position, since here the particles usually collide only once with the vanes.

In the× configuration, the two top vanes act as a particle trap as sketched. This
means that the vanes now and again have to turn sideways to unload the trapped
particles, and afterwards re-assume an × configuration again. For growing shak-
ing strength the system has to unload more frequently, because more particles are
caught per second when the center of mass of the gas is located close to the vanes.

(b) Above a critical value Scr, this rocking motion turns into an unbiased ran-
dom walk between the four equivalent× positions. That is, the vanes now explore
a widening range of angles following the diffusion law 〈θ 2(t)〉 = 2Dt, where D
is the diffusion coefficient [13]. The value of D grows with increasing shaking
strength. The distribution of the angle θ(t) (mod 2π) over time still shows a
preference for the × positions (see inset); this feature diminishes gradually with
increasing S until at very strong shaking the distribution becomes uniform.

(c) In Fig. 6.2(c) we encounter a second transition: The probability distribution
function (PDF) of the angular velocity dθ/dt develops a double maximum. This
can be traced back to the fact that the rotating vanes induce a convective motion
of the granular gas in the same direction. Thus, the vanes experience more kicks
in that direction, causing them to persist in their rotation. Only a sufficiently
large statistical fluctuation will reverse the direction, and then the same argument
applies to the opposite rotation.

(d) At vigorous shaking, Fig. 6.2(d), the double maximum is evident: The
angular velocity is either strongly positive or negative, but rarely close to zero
anymore.

In Fig. 6.3 we plot the diffusion coefficient D as a function of the shaking
strength parameter. It is zero up to the critical value Scr, and then starts to rise
continuously: D ∝ (S−Scr)α . The critical exponent α ≈ 1.7, determined from a
best fit to the data around this point, confirms the observed smooth transition from
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Figure 6.2: Symmetrically coated vanes. The angle θ(t) as a function of time and the
PDF of the angular velocity, P(dθ/dt), for N = 2000 particles and h = 51 mm at four
different shaking strengths: (a) amplitude a = 1.5 mm, frequency f = 50 Hz [i.e., S =
0.44], (b) a = 1.5 mm, f = 110 Hz [S = 2.15], (c) a = 3.5 mm, f = 55 Hz [S = 2.92], (d)
a = 3.5 mm, f = 65 Hz [S = 4.08].
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Figure 6.3: Symmetrically coated vanes. Diffusion coefficient D of the unbiased random
walk performed by the vanes as a function of S, showing the onset of diffusion at Scr =
0.48. The dots (blue) are data for h = 51 mm, the squares (red) for h = 75 mm, always with
N = 1000 particles. The error bars denote the standard deviation of the three experiments
associated with each point. The dotted line (black) represents the best fit to the data around
the onset: D ∝ (S− Scr)α , with critical exponent α ≈ 1.7. The sketched setup (for large
S) shows that the granular gas has expanded far beyond the vanes, which is the reason for
the decrease of D at strong shaking.

the rocking motion to the random walk between the four × positions.
For values well beyond the transition value Scr, the diffusion coefficient D

increases less steeply than predicted by the critical behavior, and at very strong
shaking it is even seen to decrease. This is because the granular gas is shaken
so vigorously here that the bulk of its mass is located above the vanes, see the
inset in Fig. 6.3. The resulting reduction in the number of particle-vane collisions
outweighs the fact that the impact per collision is stronger: Thus the total amount
of energy imparted to the vanes (and hence D) is reduced.

6.3 Asymmetrically coated vanes: Ratchet

In order to turn the system into a ratchet, we now introduce a slight asymmetry.
This is done by coating the left hand side of each vane with rubber tape, which
makes this side considerably softer and changes the coefficient of normal restitu-
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tion to e≈ 0.5. So here the kinetic energy from the colliding particles is dissipated
more than on the other side, or stated differently, the collisions at the soft side are
less effective in moving the vane. As a result the vanes will preferentially rotate
in the counter-clockwise direction.

Figure 6.4, the asymmetric counterpart of Fig. 6.2, indeed shows a clear pref-
erence for the counter-clockwise motion (the positive θ direction): The Smolu-
chowski-Feynman ratchet has been achieved.

At very low shaking strengths [Fig. 6.4(a)], when there is hardly any interac-
tion yet with the granular gas, the vanes flutter around the × position just as in
the symmetric case. It takes a certain threshold value Scr to establish the ratchet
effect: In Fig. 6.4(b) the vanes are seen to rotate in the counter-clockwise direc-
tion with an average angular velocity 〈dθ/dt〉= 0.45 rad/s. The maximum of the
velocity distribution lies somewhat higher than this average value, and the inset
shows the reason why: Despite its preference for the counter-clockwise direction,
the system occasionally also moves in the other direction, when (due to a fluc-
tuation) the collective particle collisions on the soft side of the vanes happen to
overcome those on the uncoated side. These reversals are a characteristic feature
of the ratchet and remain present also at higher shaking intensities.

In Fig. 6.4(c) we witness how the velocity distribution has acquired a shoulder,
indicating the formation of a double maximum just as in the symmetric case, but
now skewed. The fully developed double peak is seen in Fig. 6.4(d). The corre-
sponding persistence of the rotational direction is also visible in the θ(t) plot: The
duration of the velocity reversals is now much longer than in Fig. 6.4(b).

Figure 6.5 shows the mean ratchet speed 〈dθ/dt〉 as a function of the shaking
parameter S. The experimental data for h = 51 mm and h = 75 mm collapse
onto a single curve, confirming that the shaking strength S is indeed the relevant
shaking parameter for our ratchet. The onset of the ratchet effect takes place via
a continuous phase transition at the critical value Scr = 0.51 (very close to the
value 0.48 found in the symmetric case). Here the mean speed 〈dθ/dt〉 becomes
non-zero and starts to grow as

〈dθ/dt〉 ∝ (S−Scr)β , (6.2)

with the critical exponent β ≈ 1.4.
Just like the diffusion coefficient D for the symmetric system (Fig. 6.3), the

ratchet speed 〈dθ/dt〉 will not follow Eq. (6.2) indefinitely. When the shaking
strength is increased to such an extent that the bulk of the granular gas is lifted
above the vanes, the ratchet will become less efficient. This means that the highest
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6.3. ASYMMETRICALLY COATED VANES: RATCHET

Figure 6.4: Asymmetrically coated vanes: ratchet. The angle θ(t) and the angular ve-
locity distribution, for N = 2000 and h = 51 mm at four different shaking strengths. The
ratchet effect (i.e., a non-zero average velocity 〈dθ/dt〉) starts in situation (b). The dashed
vertical lines give 〈dθ/dt〉. (a) Shaking amplitude a = 1.5 mm, frequency f = 60 Hz
[i.e., S = 0.64], 〈dθ/dt〉 = 0.00 rad/s, (b) a = 1.5 mm, f = 110 Hz [S = 2.15], the inset
shows typical velocity reversals around the average 〈dθ/dt〉= 0.45 rad/s, (c) a = 3.5 mm,
f = 55 Hz [S = 2.92], 〈dθ/dt〉 = 0.82 rad/s, (d) a = 3.5 mm, f = 65 Hz [S = 4.08],
〈dθ/dt〉= 2.49 rad/s.
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Figure 6.5: Asymmetrically coated vanes: ratchet. Ratchet speed 〈dθ/dt〉 vs. S, showing
the onset of the ratchet effect at Scr = 0.51. The dots (blue) are experimental data for
h = 51 mm, the squares (red) for h = 75 mm, always with N = 1000 particles. The
error bars denote the standard deviation of the three experiments associated with each
point. The dotted line is the best fit to the data around the onset, 〈dθ/dt〉 ∝ (S− Scr)β ,
with β ≈ 1.4. The ratchet speed is seen to decrease for strong shaking, which is due to
the expansion of the granular gas beyond the vanes, similar to the case of symmetrically
coated vanes shown in Fig. 6.3.

efficiency is reached at some intermediate S-value, which depends on the number
of particles: For small N (when the granular gas is lifted more easily) the optimal
shaking strength lies lower than for large N.

6.4 Conclusion

We have constructed a continuously working Smoluchowski-Feynman ratchet,
immersed in a granular gas. The inherent non-equilibrium properties of this gas
are of fundamental importance for the ratchet, which otherwise (in a heat bath in
thermodynamic equilibrium) would not be able to function [4].

The second important ingredient for the ratchet effect, the breaking of the
symmetry, is introduced into the system by giving the two sides of each vane a
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different coating. This immediately triggers a preferential direction of rotation,
i.e., the ratchet effect. For symmetrically coated vanes the system performs an
unbiased random walk, with no preference for either direction.

The onset of the ratchet effect takes place at a critical shaking strength Scr
via a continuous, smooth phase transition. Beyond this point, at vigorous shak-
ing, a second critical phenomenon is observed: The velocity distribution develops
a double maximum. Here the rotating vanes and the induced convection roll in
the granular gas reinforce each other: They make the motion of the system more
persistent, not only if this motion is in the preferential ratchet direction, but also
in the case when (by a statistical fluctuation) the system happens to rotate in the
opposite direction.
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CHAPTER 7. LEIDENFROST STARS

When a drop of water is put on a hot plate held above the Leiden-
frost temperature TL ≈ 220◦C, it will float on its own vapor layer
for a long time. Above a critical plate temperature Tstar ≈ 320◦C
this Leidenfrost drop shows star-like shape oscillations, i.e., Leiden-
frost stars. We show that the oscillation frequency is well described
by the capillary eigenfrequency irrespective of the exact geometry of
the drop. Particle tracking within the drop reveals that these lateral
shape oscillations form just one of the possible modes of motion in
which the symmetry of the floating Leidenfrost drop is broken. The
observed transitions between these motion modes correspond to a
complete transfer of kinetic energy. We discuss the possible mech-
anisms triggering symmetry breaking.

7.1 The Leidenfrost effect
In 1732 the renowned Dutch researcher Hermann Boerhaave (1668-1738) wrote
in his “Elementa Chemiae” that to his surprise a drop of alcohol put on a hot
plate did not ignite, but started floating over the plate. This effect was thoroughly
investigated by Johann Gottlob Leidenfrost (1715-1794) in “De Aquae Communis
Nonnullis Qualitatibus Tractatus” (A Tract About Some Qualities of Common
Water) published in 1756 [1], see Fig. 7.1. The Tractatus is a very detailed study
of 175 pages in Latin, of which 39 deal with the experiment we now refer to as the
“Leidenfrost effect”: A drop of liquid deposited on a sufficiently hot surface will

Figure 7.1: Hermann Boerhaave was the first to report the effect we now know as the
“Leidenfrost effect” in his Elementa Chemiae of 1732: A drop can float on a sufficiently
hot plate. Johann Gottlob Leidenfrost, Professor at the University of Duisburg (Germany),
published his Tractatus in 1756, in which he reports the thorough research he performed.
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7.1. THE LEIDENFROST EFFECT

Figure 7.2: The Leidenfrost effect of a water drop hovering over a hot plate on its vapor
layer.

hover over the surface for minutes instead of vaporizing instantly, see Fig. 7.2.
Leidenfrost started his experiments by carefully putting a drop of water into

an iron spoon (“well polished and without rust”) that was heated red-hot in a
fireplace. Using a pendulum he then timed how long the drop survived, after
which he deposited another drop. He observed that on the spot where the drop
had been the spoon turned dull, whereas the surroundings were still red-hot. He
noticed that the lifetime of the consecutive drops decreased rapidly.

How can this behavior be understood? When the drop hits the hot spoon the

Figure 7.3: The lifetime of a drop of water (volume V = 0.4 ml) as a function of the plate
temperature. The temperature for which the lifetime is maximal defines the Leidenfrost
temperature TL.
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bottom layer vaporizes immediately. From this moment on the vapor layer pre-
vents direct contact of the drop with the hot surface. Heat is still transferred indi-
rectly through the vapor cushion, but this is far less effective since water vapor is
a poor heat conductor and therefore the Leidenfrost drop evaporates only slowly.

The Leidenfrost effect is observed for drops of water if the temperature of the
hot surface is held above the so-called Leidenfrost temperature, which is TL ≈
220◦C for water. At this temperature the drop lives longest, which can easily be 7
minutes under ideal circumstances. Figure 7.3 shows that for temperatures below
the Leidenfrost temperature the lifetime of the drop diminishes rapidly. This is
due to the fact that the vapor layer shrinks until direct contact with the hot surface
can instantly vaporize the drop. It was exactly this process that was observed by
Leidenfrost by adding drops to the spoon causing it to cool down far below the
Leidenfrost temperature.

The Leidenfrost effect, also known as film-boiling, is important in many in-
dustries where liquid comes into contact with a hot surface. Professional cooks
utilize the Leidenfrost effect to check whether their pan is hot enough, by putting
a drop of water on a pan. If it becomes a floating Leidenfrost drop the temperature
is high enough to bake pancakes for example.

7.2 Leidenfrost stars
As the temperature of the hot surface is increased far above the Leidenfrost tem-
perature, the drop starts to show star-like shape oscillations. To our knowledge
this phenomenon has been reported for the first time by Holter and Glasscock in
1952 [2] and a small number of experimental studies have been reported since [3–
7]. Here we present a study on the dynamics of and the process to these lateral
shape oscillations, which we call “Leidenfrost stars” similar to the “nitrogen stars”
reported by Strier et al. for freely evaporating drops of liquid nitrogen [8].

Closely related to these Leidenfrost stars are the drops subjected to vertical
vibrations that show contour oscillations when shaken above a critical shaking
strength [9, 10]. Similar oscillation modes have been reported for drops levitated
aerodynamically or magnetically [11–14].

Our setup consists of a stainless steel disk (diameter 13 cm) with a concave
top surface with radius of curvature of 0.7 m. This shape ensures that the drop
is centered by gravity such that the drop can float smoothly over the disk without
wandering off. The disk is placed on an accurate heater such that the spatiotem-
poral temperature fluctuations remain below 2◦C. The plate temperature T is
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7.2. LEIDENFROST STARS

Figure 7.4: High-speed pictures of Leidenfrost star modes n = 2−8 (with n the number
of lobes), that establish spontaneously during the evaporation process when the plate tem-
perature is above Tstar ≈ 320 ◦C. The highest mode numbers, n = 7 and n = 8, are rarely
observed and can be induced by poking the drop. We focus on freely evolving Leidenfrost
drops only, which most commonly show the n = 4 and n = 6 mode.

measured by a thermocouple incorporated in the hot plate.
A ring light (diameter 18 cm) consisting of white LED’s was placed 5 cm

above the plate. It provided the oblique, continuous illumination to capture the
entire contour of the rapidly oscillating drop using a high-speed camera recording
the top view at 1000 fps. Besides, a normal-speed camera (30 fps) filmed all
experiments from above to study the dynamics of the Leidenfrost drop on longer
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time scales. Due to the concave shape of the plate we were not able to record the
drop from aside, so we focus on the top view only.

Every experiment is initialized by depositing a drop of ultra pure water (Milli-
pore) in the center of the hot plate by a syringe. To optimize reproducibility, water
is injected in excess, such that the initial drop experiences a Rayleigh–Taylor in-
stability of its bottom interface [7]: In the center of the drop a pocket of vapor
accumulates and eventually bursts when the top surface is met. This instability
is present until the evaporating drop has reached a radius of r ≈ 10 mm, which
defines a common starting point of our experiments.

During the evaporation process we often witness the spontaneous formation of
a Leidenfrost star, provided that the plate is above the critical temperature Tstar =
320±5◦C. Figure 7.4 shows several examples of Leidenfrost star modes n, where
n is defined by the number of lobes of the star. We observed that if the plate
temperature is well above Tstar the probability for observing a Leidenfrost star
increases considerably and becomes 1 for T = 360◦C.

Another observation was that for a fixed plate temperature and at a fixed drop
size significant variations were found in the presence of a given mode. To obtain
enough statistics we performed the experiment 20 times for a given plate temper-
ature. It turns out that the Leidenfrost drop favors the even modes over the odd
modes and especially the n = 4 and n = 6 mode are observed. In general, Leiden-
frost stars are only observed for drops in the radius range r = 3− 8 mm. More
specifically, the probability distribution for the n = 4 mode shows two maxima,
which are located at r = 5 mm and r = 7 mm. The n = 6 mode finds its single
maximum at the intermediate drop radius of r = 6 mm. The studied range of plate
temperatures (T = 300− 370◦C) is too limited to determine the significance of
these preferential drop sizes.

7.3 Drop morphology and particle tracking
Now that we have determined the conditions for the spontaneous formation of Lei-
denfrost stars, the route towards this phenomenon will be studied by visualizing
the internal motion of the droplet. Therefore we tracked hydrophobic, polyamide
particles of diameter 50 µm using a mass concentration of 0.02%. Although these
particles remain at the surface, we experienced that the motion shown by the hy-
drophobic particles is a good indication for the flow within the drop. These exper-
iments revealed that there are three morphologies possible during the evaporation
process and they correspond to the following three modes of drop motion:
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Figure 7.5: The three possible drop morphologies (white bars denote 1 mm): (a) A
smooth, axisymmetric shape showing a large-scale roll running over the whole drop. In
the zoom picture on the right the motion within the drop is visualized by particle tracking
and is indicated by the solid, yellow line. (b) The non-axisymmetric shape is a result of
a travelling wave along the surface, since the particle trajectory (solid, yellow line) in the
zoom picture is a closed path. (c) A Leidenfrost star showing the n = 4 mode. The right
image shows a tracked particle, which reflects the oscillation along a fixed axis directed
towards the center of the drop.
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(i) Roll: Figure 7.5(a) shows an axisymmetric shape with a circular top view
that has a smooth surface. The surface can also be corrugated corresponding
to axisymmetric surface modes developing along any cross-section of the drop.
These vertical oscillation modes have been studied extensively for drops on vi-
brating hydrophobic substrates [9, 10]. We do occasionally observe this effect by
eye, but cannot study it in detail due to our concave steel disk and therefore we
focus on the case in which the drop has a smooth surface. At first glance this
drop seems still, but the seeding particles reveal that in this axisymmetric shape
an overall circulation is present.

(ii) Wave: The second morphology is the non-axisymmetric shape of Fig. 7.5(b),
which at first seems to be a rigid rotating drop. Particle tracking however reveals
that a travelling wave propagates along the drop contour without a significant ro-
tation of the drop.

(iii) Star: The star-like shape of the Leidenfrost star is well approximated by
the following contour equation:

r(θ , t) = R+an cos(2π fnt) cos(nθ), (7.1)

where R is the mean drop radius, an the amplitude of mode n and fn the oscillation
frequency for that mode. Fig. 7.5(c) shows the trajectory for a particle located
close to the contour and demonstrates that it is passively transported back and
forth by the shape oscillations. We did not observe any significant drop rotation
on the timescale of these oscillations.

7.4 Capillary eigenfrequency
We now focus on the frequency fn of the various Leidenfrost star modes recorded
with the high-speed camera. By following the drop contour in the high-speed
pictures as a function of time, the frequency of the mode is determined for all
experiments. Figure 7.6 shows that the frequency of the n = 4 mode decreases
for an increasing drop radius. This behavior indicates that the shape oscillations
are a capillary phenomenon and we expect from dimensional analysis that the
frequency scales as fn ∝

√
σ/ρL3, with σ = 59 mN/m the surface tension for

boiling water at 100◦C, ρ = 960 kg/m3 the density of boiling water, and L the
relevant length scale of the drop.

We now determine this relevant length scale L. Since our range of drop sizes
lies above the capillary length `c =

√
σ/ρg = 2.5 mm (with g = 9.81 m/s2 the
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Figure 7.6: Frequency f of the n = 4 Leidenfrost star vs. the drop radius R. The +
signs (blue) represent experimental data and the dashed (blue) line is the fit for R > 5 mm
yielding a power law exponent of −1.46. The dotted (black) line is based on Eq. (7.2) for
the spherical geometry and the solid (red) line for the cylindrical prediction of Eq. (7.3),
both with the theoretical value for σ = 59 mN/m for boiling water.

gravitational acceleration), the drops are flattened by gravity and have puddle-
like shapes [7]. Hence their height does not vary much from the saturation value
2`c [15] and therefore we expect the mean radius R to be the relevant length scale.
This is confirmed by the fit for R > 2`c shown in Fig. 7.6 yielding a power law
exponent of −1.46, which is close to the theoretical exponent −3/2 found above.
For drop radii below R = 2`c = 5.0 mm (i.e., when the height of the drop starts
to play a role as the relevant length scale), the deviations from the experimental
fit are observed to remain small. These deviations are probably caused by surfac-
tants unavoidably picked up during the experiments, causing the surface tension
to be reduced below the theoretical value of 59 mN/m for boiling water. Surfac-
tants become more effective for smaller drop sizes [15], hence the observed small
deviations from the experimental fit for R < 5.0 mm in Fig. 7.6.

So the experimental data and their fit presented in Fig. 7.6, indicate that the
precise geometry of the drop is not of major influence on the frequency of the
star oscillations. To make this argument more quantitative, we now compare the
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Figure 7.7: Dimensionless frequency fnR3/2(ρ/σ)1/2 as a function of mode number
n. The dots (blue) represent the averaged experimental data and the error bars denote
the standard deviation. The dashed (black) line is based on the spherical geometry of
Eq. (7.2) and the solid (red) line is for the cylindrical prediction of Eq. (7.3), both with
σ = 59 mN/m.

measured frequency to the capillary eigenfrequency of two simple geometries; the
sphere, and the cylinder. For a distorted sphere of shape r(θ ,ϕ) = R+εYn,m(θ ,ϕ),
where Yn,m is a spherical harmonic, the eigenfrequency depends only on the mode
number n as [16]:

f 2
n =

1
(2π)2 (n−1)n(n+2)

σ
ρR3 . (7.2)

For a distorted cylinder of shape r(θ) = R + ε cosθ , the eigenfrequency takes
form [17, 18]:

f 2
n =

1
(2π)2 (n−1)n(n+1)

σ
ρR3 . (7.3)

The predictions for the capillary eigenfrequency of Eq. (7.2) and Eq. (7.3) are in
good agreement with the experimental data of Fig. 7.6, but show a small over-
estimation due to a slightly reduced surface tension σ caused by surfactants as
mentioned above. Using σ of Eq. (7.2) as a fit parameter we obtain the ef-
fective surface tension for a spherical drop shape including surfactants:
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σsphere = 41 mN/m. For the cylindrical shape, Eq. (7.3), we find an effective sur-
face tension of σcylinder = 50 mN/m. These values are reasonably close to the
theoretical one of 59 mN/m (for boiling water at 100◦C), such that we can con-
clude that the amount of surfactants involved in the experiments is very tiny, since
only a minuscule concentration of surfactants changes the surface tension of water
dramatically [11].

In order to compare the oscillation frequency for various mode numbers, we
consider the dimensionless frequency fnR3/2(ρ/σ)1/2 in Fig. 7.7. It is seen to
grow with the mode number n and this trend is, again, well-described by the pre-
diction for a capillary oscillation for a sphere and a cylinder, see Eqs. (7.2) and
(7.3).

Figures 7.6 and 7.7 confirm that the capillary eigenfrequency shown by the
Leidenfrost star is independent of the exact geometry of the drop.

7.5 Transfer of kinetic energy
In Fig. 7.5 we have identified three possible drop morphologies and particle track-
ing revealed that there is a close relation between the drop shape and its internal
motion. We now show that the transitions between these motion modes conserve
the total kinetic energy of the drop:

(i) For the axisymmetric drop with a smooth surface of Fig. 7.5(a), the internal
motion is a single roll around the whole drop. All tracked particles show no
significant velocity difference along their straight paths. The relative velocity
variations for different particles across the drop are less than 10%. Since we do not
know the velocity profile within the drop, a uniform velocity v0 is assumed inside
the whole drop. Thereby we slightly overestimate the kinetic energy, because in
the middle of the roll, i.e., in the central part of the drop, the velocity should
vanish. This leads to the following approximation for the total kinetic energy of a
roll:

Eroll ≈ 1
2

ρV v2
0, (7.4)

where the drop volume is roughly V ≈ πR2h≈ 2πR2`c, since the drop is puddle-
like as discussed in the previous section.

(ii) Figure 7.5(b) shows the non-axisymmetric, rotating shape, which corre-
sponds to the motion mode of a travelling wave along the contour. Since the
shape deformation remains small, the drop profile can be described by r(θ , t) =
R + an(θ −ωt), with an the profile of the wave being a function of θ −ωt, with
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Motion mode E (µJ)
roll 0.76 ± 0.13
wave 0.85 ± 0.18
star (n = 4) 0.73 ± 0.23
star (n = 6) 0.71 ± 0.13

Table 7.1: The kinetic energy (± standard deviation) based on Eqs. (7.4), (7.5) and (7.6)
for the three motion modes: (1) An overall roll, (2) a travelling wave along the contour and
(3) a Leidenfrost star. The kinetic energy for the n = 6 Leidenfrost star is a combination
of two motion modes; star-like oscillations (0.48±0.06 µJ) and an overall convective roll
(0.22±0.06 µJ).

θ the angle and ω the angular speed of rotation. Hence, the radial velocity com-
ponent of a particle located at the contour is vC(θ , t) = ∂ r/∂ t = −ωa′n(θ −ωt).
For a simple estimate we assume that the radial velocity field within the whole
drop scales as v(r,θ , t)≈ rvC(θ , t)/R, for |an| ¿ R. Then the total kinetic energy
corresponding to this motion mode reads:

Ewave ≈ 1
2

ρ
∫

drop
v2dV ≈ 1

2
ρ

h
R2

∫ R

0
r3dr

∫ 2π

0
v2

Cdθ

≈ 1
4

ρ`cR2ω2
∫ 2π

0
(a′n)

2dθ . (7.5)

The latter integral is then numerically computed from the contour profile of the
drop. We neglect the tangential velocity component, which is much smaller than
the radial component as shown in Fig. 7.5(b).

(iii) The shape of the Leidenfrost star, such as the n = 4 mode of Fig. 7.5(c),
is well described by Eq. (7.1). The velocity of the tracked particles is directed in
the purely radial direction for all modes except the n = 6 mode, where besides the
oscillatory motion we additionally observe an overall circulation. This roll will
be treated separately from the shape oscillations and in the same way as discussed
above under (i).The pure radial velocity is estimated from Eq. (7.1): vr(θ , t) =
−ωnan sinωnt cosnθ . We observed that particles located in the central area of
the drop, i.e. r ≤ R0 − an, are hardly affected by the oscillations, which leads
to the following approximate kinetic energy: Estar ≈ ρ

∫
V v2

r dV/2, where V is
the volume of the drop in the region r ≥ R0− an. After computing this integral
and time-averaging, the total kinetic energy associated with the Leidenfrost stars
becomes:

Estar ≈ π
2

ρ`cRa3
nω2

n . (7.6)
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Based on the estimates of Eqs. (7.4), (7.5) and (7.6), the kinetic energies as-
sociated with the three morphologies have been determined, see Table. 7.1. We
averaged over various experiments, since no significant variations in the kinetic
energy were found for drops of different size in the range R = 5−8 mm.

7.6 Discussion
The experiments discussed above yield information on the dominant mechanism
triggering symmetry breaking observed in any of the three motion modes. We
start with the mechanisms that can be excluded by the current investigation and
end with the possible mechanisms triggering symmetry breaking:

First, destabilization by the Marangoni effect was suggested by Baumeister
et al. [5] and Strier et al. [8]. They suggest that surface tension differences are
present, based on the assumption that the top of the drop will be colder than the
bottom. However, Biance et al. [7] reported a constant temperature in the drop of
99±1◦C, so the top-bottom symmetry is not broken.

Baumeister et al. [5] proposed that the driving force behind symmetry break-
ing might originate from the drop periodically touching the hot plate, thereby
receiving a burst of energy. This mechanism can be excluded, since the Leiden-
frost drop stays afloat without touching the hot plate when the plate temperature
is above the Leidenfrost temperature for water, TL ≈ 220◦C.

Thirdly, a plausible mechanism: The vapor flowing radially outward under-
neath the drop exerts a drag force on the bottom interface of the drop. As a result
a toroidal vortex ring, like the one reported by Strier et al. [8], can be created
within the drop. Although we have never observed a vortex ring, it is plausible
that the vapor induces a flow inside the drop. The vortex ring may be unstable to
some perturbation and trigger the breaking of symmetry we do observe in experi-
ment.

Another possible mechanism is related to the vertical oscillation mode men-
tioned earlier and which was studied by Courty et al. [10]. We observed that the
axisymmetric shape of Fig. 7.5 is then corrugated and a perturbation could trigger
symmetry breaking in this vertically oscillating drop.

Finally, we discuss the mechanism that most likely leads to the formation of
Leidenfrost stars: A perturbation, e.g., a nonuniform surfactant concentration,
modulates the bottom interface of the drop, which results in “channels” that facil-
itates the outflow of vapor. Hereby zones of stronger drag are generated, where the
drop is pulled radially outward. Surface tension then tries to restore the spherical
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drop shape, leading to an inversion of the “channels” underneath the drop. This
periodic modulation then sustains the oscillating Leidenfrost stars.

We observed that the even modes of the Leidenfrost stars are preferred over
the odd modes. This is probably due to the fact that in an even mode the fluid
in a lobe has a balancing counterpart in the opposite lobe, such that during the
oscillations the center of mass does not move. This dynamical symmetry is absent
in the odd modes, making them energetically less favorable for the Leidenfrost
drop.

7.7 Conclusion
Oscillating Leidenfrost stars form spontaneously when a drop of water is de-
posited on a sufficiently hot plate, which should be kept above the critical tem-
perature Tstar ≈ 320◦C. This is a capillary phenomenon, since the frequency of
these shape oscillations is in good agreement with the capillary eigenfrequency of
the Leidenfrost drop. We have shown that the exact geometry of the drop does not
influence the frequency displayed by the Leidenfrost stars.

Three drop morphologies have been identified during the evaporation process
of the Leidenfrost drop and they correspond to three motion modes in which the
symmetry of the system is broken: An overall roll, a wave running over the con-
tour, and a Leidenfrost star. In the observed transitions between these motion
modes the kinetic energy is completely transferred, so the total energy of the drop
is constant in all motion modes.

More experiments are needed to confirm the observed preferential drop sizes,
for which specific Leidenfrost star modes are shown. Besides, a detailed study is
needed to indicate the exact mechanism behind the symmetry breaking that even-
tually triggers the Leidenfrost stars.

Acknowledgments: We would like to thank Michel Versluis, Leen van Wijngaar-
den, Ko van der Weele, and Detlef Lohse, for stimulating discussions.
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8.1 Conclusion
In this thesis collective phenomena observed in vertically shaken granular matter
have been studied by means of experiments, simulations and theoretical analy-
sis. The combined results shed light on the degree to which hydrodynamic-like
models can be applied to granular systems, thereby answering the central question
posed in Chapter 1.

First of all the experiments of Chapter 2 revealed a rich phase diagram featur-
ing the following phenomena: Bouncing bed, undulations, granular Leidenfrost
effect, convection rolls, and granular gas. Keeping the particle parameters fixed,
we showed that the dimensionless acceleration Γ is the relevant shaking param-
eter for mild fluidization, and the dimensionless shaking strength S governs the
phenomena observed for strong fluidization.

We then explored the details of this phase diagram, where the granular Lei-
denfrost effect (Chapter 3) is observed in experiment for the first time: Above a
critical shaking strength, and for a sufficient number of beads, a crystalline cluster
is elevated and supported by a dilute gaseous layer of fast beads underneath. This
state, in which the solid and gas phases co-exist, is quantitatively captured by a
hydrodynamic model. This is a great success for granular hydrodynamics, since
granular systems cannot a priori be expected to be correctly described by contin-
uum theory.

Exploring the phase diagram further we studied buoyancy driven granular con-
vection in Chapter 4. These counter-rotating convection rolls with pronounced
density variations are observed for strong fluidization. The experimental results
are in agreement with Molecular Dynamics simulations and the onset of convec-
tion is successfully explained by a linear stability analysis of the hydrodynamic
model of the Leidenfrost state. This theoretical approach for granular convection
is analogous to the one used to determine the onset of Rayleigh-Bénard convection
in ordinary liquids. This once more stresses the applicability of granular hydro-
dynamics for collective phenomena observed at strong shaking strengths.

The success of the continuum description for the Leidenfrost effect and the
convection may be attributed to the fact that the clusters, the convection rolls, and
also the dilute parts are sufficiently large compared to the size of a single parti-
cle. To explore the limits of continuum theory, in Chapter 5 we therefore study
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a system which has a characteristic feature of the size of a single particle: The
horizontal array of inelastic particles introduced by Du, Li, and Kadanoff [1].
We showed by comparing hydrodynamic theory to Molecular Dynamics simula-
tions, that the continuum model correctly describes the density profiles but not
the temperature. The reason for this breakdown of continuum theory is that in
the steady state only one particle commutes between the left wall and the close-
packed cluster on the right. Hydrodynamics assumes energy exchange throughout
the dilute region, but the actual energy exchange of this single particle only takes
place right at the boundary of the cluster. This sharp localization (of the size of
one single particle) is the reason why the continuum approach starts to fail: This
system marks the edge of granular hydrodynamics.

In Chapter 6 we experimentally realized the first macroscopic Smoluchowski-
Feynman ratchet and the first one able to rotate continuously, consisting of four
rotating vanes in a granular gas. This granular ratchet can work thanks to the fact
that the granular gas is far from thermal equilibrium and because we have broken
the symmetry of the system by coating the two sides of each vane differently. The
ratchet effect sets in at a critical shaking strength Scr via a continuous, smooth
phase transition. At vigorous shaking a second critical phenomenon is observed:
The velocity distribution develops a double maximum, due to the positive feed-
back which the vanes get from the convective rotation they induce in the granular
gas.

In Chapter 7 we turn from granular hydrodynamics to ordinary liquids: Os-
cillating Leidenfrost stars. These stars form spontaneously when a drop of water
is deposited on a sufficiently hot plate, i.e., higher than Tstar ≈ 320◦C. We have
shown that this is a capillary phenomenon, since the frequency of these shape os-
cillations is in good agreement with the capillary eigenfrequency of the floating
Leidenfrost drop. The exact geometry of the drop does not influence the frequency
of oscillation of the Leidenfrost stars.

8.2 Outlook
The present study, like any research project, has not only answered many ques-
tions but also generated a number of new ones. Hopefully, these questions will
become the subject of future investigations, and for this reason the most relevant
and promising ones will be put forward here.
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In the context of Chapter 2 the main future objective is to extend the phase
diagram obtained for the quasi 2-D setup to the general case for three dimensions.
This will show an even wider variety of phenomena, including oscillons, 3-D
wave patterns, and 3-D convection cells [2–25]. The phase transitions of this
general 3-D phase diagram constitute an interesting research field on its own.
Granular systems are ideally suited to study phase transitions in non-equilibrium
many particle systems, and the fact that these systems consist of much less than
the 1023 particles of standard statistical physics means that also the influence of
small number fluctuations will show up naturally.

We have already made a step towards this general 3-D phase diagram when
we varied the aspect ratio for the granular Leidenfrost effect in Chapters 2, 3,
and 4. In the 2-D setup of Chapter 3 we focused upon the transition from the solid
phase to the Leidenfrost state (which was found to be a second order, continuous
phase transition) and in the slightly higher dimensional setup of Chapter 4 we
studied the transition from the Leidenfrost state to buoyancy-driven convection.
It will be very interesting to see how a further increase of the dimensionality of
the system will change the location of the Leidenfrost state and its transitions to
other, neighboring states in the phase diagram.

The phase diagrams in the present thesis were obtained primarily from exper-
iment and theory. We think that in order to obtain the general 3-D phase diagram
also MD simulations must play a key role. One of the reasons for this is that it is
very difficult to get detailed experimental information about the particle behavior
inside a 3-D bed, whereas in MD simulations this information is readily available.
Another reason is that there is no limit on the shaking strength in MD simulations.
This becomes particularly important when we study the transition from the con-
vective state to a granular gas, which occurs at shaking strengths beyond the reach
of our shaker. It may be anticipated that this transition will be well-described by
hydrodynamic theory, because this approach works best at strong fluidization.

Also in the context of Chapter 5 it will be very interesting to increase the di-
mensionality of the system. We anticipate that the 2-D version of the one dimen-
sional tube of inelastic particles will show a less sharp localization of the energy
exchange (so the dilute region is no longer a Knudsen gas) and hence that granular
hydrodynamics may give good results.

An interesting extension would be to slowly increase the influence of gravity
by tilting the system. At low tilting angles one then gets a system very similar to
the one studied by Kudrolli et al. [26], where one sees that the cluster becomes
less attached to the insulating (upper) wall. By gradually increasing the tilting
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angle (up to 90 degrees) we will witness the transition to the vertical Leidenfrost
effect of Chapter 3.

Next to the MD simulations and hydrodynamic theory presented in Chapter 5,
we would also propose to do the corresponding experiments: To perform the ex-
periment in “one-dimension” one can think of a horizontal rail blowing air through
tiny holes, thereby elevating gliders that act like particles moving over the rail al-
most without friction. A vibrating wall on one side and a reflective wall on the
other make the setup complete.

The position of the cluster’s center of mass xCM can be further studied, numer-
ically and experimentally, by means of its probability distribution function (PDF).
We expect that the PDFs for different restitution coefficients e can be rescaled to
get a self-similar solution, and thereby shed light on the singular behavior of the
system in the elastic limit e→ 1.

For the granular ratchet experiments of Chapter 6 it is experimentally not fea-
sible to record the collisions of the particles with the vanes, so also the feedback
of the vanes to the gas cannot be measured. We therefore propose to apply MD
simulations to study the granular ratchet on the level of particle-vane collisions.
We expect that the MD velocity field of the granular gas will confirm the presence
of a large scale particle circulation, which we have conjectured to be the cause of
the double-peaked velocity distribution at very strong fluidization.

In Chapter 7 we have indicated that surfactants are crucial for the Leidenfrost
stars. It is therefore important to perform a study in which the amount of surfac-
tants is varied in a controlled way. We are aware that a systematic study of the
effect of surfactants is experimentally challenging [27], but we expect that the in-
fluence of the surfactants on the oscillation frequency of the Leidenfrost stars will
be strong enough to yield a definitive answer.

In this thesis we have shown that hydrodynamic theory is able to describe phe-
nomena observed in vertically shaken granular matter. To explore the applicability
of granular hydrodynamics further, we think it is now crucial to put it to the test
in granular systems that are only partially dynamic, such as an avalanche, granu-
lar jet and a flowing hopper. Successful hydrodynamic descriptions for some of
these systems have been achieved already [28–30], and the challenge of granu-
lar research today is to form a general granular hydrodynamic theory in which the
constitutive relations (including corrections for finite particle size) play a key role.
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CHAPTER 9.

9.1 Summary
Granular matter is the general name for materials consisting of grain-like solids
and can be encountered everywhere in our daily life, for instance in the form
of sand, sugar, cereals and pills. Numerous industries deal with these kinds of
materials, which often cause severe problems during transportation, handling, or
storing. The corresponding waste of energy globally adds up to an estimated 500
billion dollar each year.

A lot of hands-on experience has been applied already to industrial applica-
tions, but the persistence of the problems with granular matter indicates that there
is a great demand for fundamental research to get a better understanding of the
underlying physics. The research described in this thesis focuses specifically on
the collective phenomena observed in vertically shaken granular matter. In this
study experiment, numerical simulation and theory are combined. The central
question is to what extent hydrodynamic-like models can describe the phenomena
observed in granular systems.

In Chapter 2 an experimental phase diagram for a quasi 2-D system is con-
structed, showing a wide range of collective phenomena observed in vertically
shaken granular matter; bouncing bed, undulations, granular Leidenfrost effect,
convection rolls, and granular gas. These phenomena and the transitions between
them, which form the main object of study of this thesis, are characterized by the
dimensionless shaking acceleration Γ (at mild fluidization), the shaking strength
S (at stronger fluidization), and the number of particle layers F .

The granular version of the Leidenfrost effect, in which a dense cluster floats
on a dilute layer of fast particles, is studied in more detail in a 2-D setup in Chap-
ter 3. The granular Leidenfrost effect is observed above a critical shaking strength
and for a sufficient number of particles. The experimental observations are suc-
cessfully explained by a hydrodynamic model, which makes the granular Leiden-
frost effect a prime example of a collective granular phenomenon captured by
hydrodynamic equations.

At strong fluidization counter-rotating convection rolls are formed starting out
from the Leidenfrost state. This buoyancy driven granular convection is the sub-
ject of Chapter 4, where the experimental observations are confirmed by numerical
simulations and correctly captured by a linear stability analysis of the hydrody-
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namic model of the Leidenfrost state as presented in Chapter 3. This approach is
analogous to the one used to determine the onset of Rayleigh-Bénard convection
in ordinary liquids, so once again granular hydrodynamics is successful.

Chapter 5 discusses the horizontal 1-D system of inelastic particles introduced
by Du, Li, and Kadanoff (1995) as a classic example of a system in which the
hydrodynamic description breaks down. In our view, this system can essentially
be treated as a horizontal version of the granular Leidenfrost effect. In the char-
acteristic steady state a single particle commutes between the driving wall and a
dense cluster. The density is well captured by a hydrodynamic description incor-
porating the finite size of the particles. The temperature profile, however, is not
described by the hydrodynamic equations, since all energy exchange is localized
at the border of the cluster: Granular hydrodynamics at its edge.

In Chapter 6 we present the first granular realization of the Smoluchowski-
Feynman ratchet. Our experimental setup consists of four vanes that are allowed
to rotate freely in a vertically shaken granular gas. The two sides of the vanes
are coated differently to induce a preferential direction of rotation, i.e., the ratchet
effect. Originally, in the Gedankenexperiment of Smoluchowski and Feynman the
device was submerged in a heat bath at thermal equilibrium, where the second law
of thermodynamics prohibits any ratchet effect: No work can be extracted spon-
taneously from an environment in thermodynamic equilibrium. The granular gas,
however, is far from equilibrium, so the granular ratchet can work. The device
cleverly translates the energy from its noisy environment (which is pumped into
the system by the vibrating bottom) into a directed motion. After various chemical
motors on the micro-scale, this is the first macroscopic Smoluchowski-Feynman
ratchet, and the first one that is able to sustain a continuous rotation.

Finally, in Chapter 7 we turn from granular hydrodynamics to ordinary liquids:
Oscillating Leidenfrost stars. These form spontaneously when a drop of water is
deposited on a sufficiently hot plate. Particle tracking within the drop reveals that
these lateral shape oscillations form just one of the possible modes of motion in
which the symmetry of the floating drop is broken. The observed transitions be-
tween these modes correspond to a transfer of kinetic energy.

The thesis ends with a general conclusion and outlook in Chapter 8.
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9.2 Samenvatting
Granulaire materie, oftewel korrelvormige stoffen zoals zand, suiker, graan en
pillen, kom je in het alledaagse leven overal tegen. Daarnaast wordt er in talloze
industrieën met dit soort materialen gewerkt. De ervaring leert echter dat er zich
tijdens het transport, bewerken, of opslaan van granulaire materie veel proble-
men voordoen. Naar schatting wordt hiermee jaarlijks een hoeveelheid energie ter
waarde van 500 miljard dollar verspeeld.

Tot voor enkele decennia bestonden er vrijwel uitsluitend ad hoc oplossingen
voor de industriële processen in kwestie, maar de problemen met granulaire ma-
terie blijken hardnekkig te zijn en dit zorgt voor een toenemende vraag naar funda-
mentele kennis. Het in dit proefschrift beschreven onderzoek richt zich specifiek
op de effecten die ontstaan wanneer granulaire materie vertikaal geschud wordt.
Hiervoor zijn experimenten, simulaties en theorie met elkaar gecombineerd. Het
centrale thema is de vraag in hoeverre de waargenomen effecten te beschrijven
zijn met zogeheten hydrodynamische (vloeistof-theoretische) modellen.

Hoofdstuk 2 behandelt het experiment, waarin de volgende fenomenen zijn
waargenomen; bouncing bed, undulaties, het granulaire Leidenfrost effect, con-
vectie en een granulair gas. Het blijkt mogelijk deze effecten samen te vatten in
één fasediagram, waarbij de schudversnelling Γ, de schudsterkte S en het aantal
lagen deeltjes F de relevante parameters blijken te zijn.

Het granulaire Leidenfrost effect wordt vervolgens in meer detail beschreven
in Hoofdstuk 3. De naam van dit fenomeen is ontleend aan het ‘originele’ Leiden-
frost effect, waarbij een druppel water minutenlang boven een hete plaat kan blij-
ven zweven op zijn eigen laagje waterdamp. In de granulaire versie ‘zweeft’ een
dicht gepakt cluster van deeltjes op een dunne laag van snelle deeltjes. Dit effect
kan pas worden waargenomen als de schudsterkte boven een bepaalde grens komt
en er bovendien voldoende deeltjes in het systeem zitten. De experimentele resul-
taten blijken succesvol beschreven te kunnen worden door een hydrodynamisch
model. Dit maakt het granulaire Leidenfrost effect tot een schoolvoorbeeld van
een granulair systeem dat zich zowel kwalitatief als kwantitatief gedraagd als een
vloeistof.

Bij nog hogere schudsterktes kunnen er convectierollen ontstaan vanuit het
Leidenfrost effect. In Hoofdstuk 4 worden deze convectierollen uit het experiment
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vergeleken met computersimulaties en blijken ze theoretisch goed beschreven te
worden door het toepassen van een lineaire stabiliteitsanalyse op het hydrody-
namische model van het Leidenfrost effect uit Hoofdstuk 3. Deze theoretische
aanpak is ook gebruikt voor het beschrijven van de Rayleigh-Bénard convec-
tierollen in gewone vloeistoffen, welke je bijvoorbeeld kan zien in een pan water
die je aan de kook brengt. Hydrodynamische theorie beschrijft dus wederom met
succes een granulair fenomeen.

Hoofdstuk 5 behandelt de horizontale buis met een rij inelastische deeltjes
geı̈ntroduceerd door Du, Li en Kadanoff in 1995. Het kan gezien worden als
een horizontale versie van het granulaire Leidenfrost effect. In de buis ontstaat
na enige tijd een evenwichtssituatie waarin een enkel deeltje heen en weer be-
weegt tussen de wand waar de energie wordt toegevoerd en het dichte cluster van
deeltjes aan de andere, reflecterende wand (zie ook het flipboek op de oneven
pagina’s). Het dichtheidsprofiel van deze situatie blijkt goed beschreven te wor-
den door een hydrodynamisch model, het temperatuurprofiel echter niet, omdat
vrijwel alle energie uitwisseling plaatsvindt bij het begin van het cluster. Dit sys-
teem bevindt zich dus precies op de grens van de granulaire hydrodynamica en
beantwoordt daarmee de centrale vraag van dit proefschrift, zoals die hierboven
geformuleerd is.

In Hoofdstuk 6 presenteren we de eerste macroscopische realisatie van de
Smoluchowski-Feynman ratchet. Deze bestaat uit een molentje met vier vaan-
tjes dat vrij rond kan draaien in een vertikaal geschud gas. De twee zijden van elk
vaantje hebben een verschillende coating, zodat er een voorkeurs-draairichting
ontstaat: Dit heet het ratchet effect. In het oorspronkelijke gedachte-experiment
van Smoluchowski en Feynman was dit molentje geplaatst in een normaal gas
in thermodynamisch evenwicht. In deze situatie verbiedt de tweede hoofdwet
van de thermodynamica dat het ratchet effect optreedt; immers, volgens deze wet
kan er geen arbeid spontaan onttrokken worden aan een omgeving in thermo-
dynamisch evenwicht. Een granulair gas bevindt zich echter niet in thermody-
namisch evenwicht: Het is deze bijzonderheid die de Smoluchowski-Feynman
ratchet in de setting van een granulair gas wel mogelijk maakt. De energie die in
het granulaire gas alle kanten op gericht is, wordt door het instrument vakkundig
omgevormd tot een beweging in één richting. Na diverse chemische ratchets op
microscopische schaal is dit de eerste keer dat de Smoluchowski-Feynman ratchet
op macroscopisch niveau gerealiseerd is en, belangrijker nog, de eerste waarbij
het molentje voortdurend rond kan blijven draaien.
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In Hoofdstuk 7 komen we nog eenmaal terug op het Leidenfrost effect, maar
nu in de originele versie van een waterdruppel die op zijn eigen damplaag zweeft.
Bij een voldoende hoge temperatuur van de plaat begint deze druppel stervormige
oscillaties te vertonen: Dit noemen we Leidenfrost sterren. Door kleine deel-
tjes aan het water toe te voegen kunnen de bewegingen in de druppel gevolgd
worden. Hieruit blijkt dat de stervormige oscillaties slechts één van de moge-
lijke bewegingsvormen zijn, die de oorspronkelijke symmetrie (de ronde vorm)
van de zwevende druppel verbreken. In onze experimenten wordt een volledige
overdracht van de kinetische energie tussen de verschillende bewegingsvormen
waargenomen, wat neer komt op een complete overgang van de ene bewegings-
vorm naar de andere.

Tot slot wordt dit proefschrift in Hoofdstuk 8 afgesloten met een algemene
conclusie en een vooruitblik voor vervolgonderzoek.
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Wat je nog meer kan leren van granulaire materie

Als de dingen in je leven je even allemaal te veel worden, als 24 uur in een dag
niet meer genoeg tijd lijkt, denk dan eens aan dit verhaal...

Een leraar stond voor de klas met een aantal voorwerpen voor zich liggen. Toen
de les begon, nam hij zonder iets te zeggen de lege pot van de mayonaise en begon
deze te vullen met golfballetjes. Toen deze hier helemaal mee gevuld was, vroeg
de leraar aan zijn studenten of de pot nu helemaal vol was. Zij antwoordden van
wel.

Toen nam de leraar een doos met kralen en kiepte deze in de pot. Hij schudde
lichtjes met de pot en de kralen rolden tussen de open plekken tussen de golfbal-
letjes. Weer vroeg de leraar aan zijn studenten of de pot nu vol was. Ze gaven
weer hetzelfde antwoord: Ja, de pot is vol.

De leraar nam nu een doos met zand en kiepte dit zand in de pot met golfballetjes
en kralen. Natuurlijk vulde het zand alle ruimte op tussen de golfballetjes en de
kralen. Weer vroeg de leraar aan zijn studenten of de pot nu vol was: De studenten
antwoordden van wel.

Van onder het bureau nam de leraar nu twee koppen koffie en kiepte de hele in-
houd van deze twee koppen koffie in de pot met golfballetjes, kralen en zand. De
koffie vulde de ruimte op tussen het zand. De studenten begonnen te lachen.

“Nu”, zei de leraar, “nu wil ik dat jullie deze pot zien als jullie eigen leven. Deze
pot gevuld met golfballetjes, kralen, zand en koffie, stelt namelijk het leven van
een mens voor. De golfballetjes zijn de belangrijke dingen in het leven: Je fami-
lie, je kinderen, je geloof, je gezondheid en je favoriete bezigheden. Dingen die
ervoor zorgen dat als er niets meer op de wereld was dan deze dingen, je leven
toch gevuld zou zijn. De kralen zijn de dingen die daarna belangrijk zijn. Je werk,
je huis, je auto. Het zand, dat staat voor de kleine dingetjes in je leven.”

“Als je het zand als eerste in de pot kiept en hem hiermee vult, is er geen plek meer
voor de kralen of voor de golfballetjes. Datzelfde geldt ook voor je eigen leven.
Als je al je tijd en energie aan de kleine dingetjes besteedt, dan kun je nooit meer
ruimte hebben voor de dingen die belangrijk voor je zijn. Besteed aandacht aan
de dingen die belangrijk voor je zijn. Speel bijvoorbeeld met je kinderen. Neem
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je partner mee uit eten. Doe nog iets leuks, er is altijd nog wel ergens tijd om het
huis te poetsen of dat kledingstuk te repareren.”

“Zorg eerst voor de golfballetjes, de dingen die echt het allerbelangrijkste voor je
zijn. Stel je prioriteiten. De rest is maar zand.”

Eén van de studenten steekt een vinger op en vraagt waar de twee koppen koffie
in die pot dan voor zouden moeten staan.

De leraar lacht en zegt de student dat ze daarmee een heel goede vraag heeft
gesteld. “Ik wilde daarmee alleen nog maar weer eens aangeven en bevestigen,
dat, hoe vol je leven ook mag zijn, er is altijd wel een plekje om samen met een
vriend of een dierbare een kopje koffie te drinken.”
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behorende bij het proefschrift van Peter Eshuis:

COLLECTIVE PHENOMENA
IN VERTICALLY SHAKEN

GRANULAR MATTER

14 februari 2008

1. Voor de collectieve fenomenen die optreden wanneer granu-
laire materie zachtjes geschud wordt, is de schudversnelling
Γ de relevante dimensieloze parameter. Bij harder schudden
neemt de schudsterkte S deze rol over.
Dit proefschrift, Hoofdstuk 2

2. De effecten die men waarneemt in een granulair systeem dat
voldoende hard geschud wordt, voldoende deeltjes bevat en
tenminste twee ruimtelijke dimensies heeft, laten zich voor-
treffelijk beschrijven met hydrodynamisch modellen.
Dit proefschrift, Hoofdstuk 2, 3, 4 en 5

3. De viscositeit van een granulaire vloeistof blijkt direct gere-
lateerd te zijn aan de energiegeleiding door het systeem via
het dimensieloze getal van Prandtl, waarbij dit getal net als in
gewone vloeistoffen van orde 1 is.
Dit proefschrift, Hoofdstuk 4



4. Een granulair gas vormt de ideale achtergrond voor de Smolu-
chowski-Feynman ratchet, aangezien de tweede hoofdwet van
de thermodynamica op zo’n gas niet van toepassing is.
Dit proefschrift, Hoofdstuk 6

5. De stervormige oscillaties die optreden in een waterdruppel
zwevend op een gloeiende plaat heter dan 320◦C volgen pre-
cies de capillaire eigenfrequentie die behoort bij de grootte van
de druppel.
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6. De sterkte van een artikel ontstaat door de onverwachte resul-
taten, die je in eerste instantie uit het veld slaan, ten goede te
keren.

7. Hoe meer je je in de natuur verdiept, hoe mooier zij wordt en
daarin vindt de wetenschapper nog altijd zijn/haar voornaamste
drijfveer.

8. Veel weten is mooi, je kennis en kunde goed over kunnen bren-
gen is nog veel mooier. Het verstandig gebruik van beeldspraak
die iedereen herkent, kan zelfs de lastigste materie verteerbaar
maken én laten beklijven.

9. Of een verschijnsel tegenintuı̈tief is, hangt af van het perspec-
tief waarin men zich bevindt.

10. Wanneer je iets snel gedaan wilt hebben, geef het dan aan ie-
mand met een druk bezette agenda.




